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Horseshoe bats have dynamic biosonar systems with interfaces for ultrasonic emission/reception
that change shape while diffracting the outgoing/incoming sound waves. An information-theoretic
analysis based on numerical and physical prototypes shows that these shape changes add sensory
information (mutual information between distant shape conformations <20%), increase the number
of resolvable directions of sound incidence, and improve the accuracy of direction finding. These
results demonstrate that horseshoe bats have a highly effective substrate for dynamic encoding of
sensory information.

Like many hearing systems in biology, bat biosonar [1]
encodes information about the presence [2], location [3],
and characteristics of sound sources [4, 5] in the environ-
ment. However, unlike many of its peers, bat biosonar
by itself has the proven capability of encoding sensory
information sufficient for rapid navigation in three di-
mensions, often in highly complicated environments [6].
The sites of ultrasound emission and reception are critical
stages for the encoding of this information, because they
are the only places where direction-dependent acoustic
diffraction can occur [7]. Hence, structures positioned
at these sites provide the sole physical substrate for the
encoding of sensory information related to target direc-
tion. Probably because of this pivotal functional po-
sition, many bat species have evolved elaborate baffle
shapes that diffract their ultrasonic pulses upon emis-
sion (noseleaves, in species with nasal emission) as well
as during reception (pinnae). In horseshoe bats (family
Rhinolophidae, [8]), for instance, shape features of the
noseleaves [9] and the pinnae [10] have been linked to
the distribution of the emitted energy and the receiver
sensitivity as a function of direction (beampatterns). In
recent years, a growing body of evidence has accumulated
to suggest that, beyond their static geometric complex-
ity, the noseleaves and pinnae of horseshoe bats have a
prominent dynamic dimension [11]. Fast dynamic shape
changes that go beyond rotations of static shapes [12, 13]
have been demonstrated to occur in both interface struc-
tures, noseleaves [14, 15] and pinnae [16, 17]. Along with
the dynamic changes to the interface shapes, changes to
the emission beampatterns during natural biosonar be-
haviors have been reported, but the underlying acoustic
mechanisms remain unclear [18]. Evidence from several
sources supports the hypothesis that the shape changes
in the biosonar interfaces play a functional role: (i) the
shape changes are effected by elaborate muscular actua-
tion mechanisms [16, 19], (ii) bats control the dynamic

shape configuration sequences based on behavioral con-
text [14, 16], (iii) shape deformations coincide with ul-
trasonic diffraction in time [14, 15], (iv) the magnitudes
of the shape changes are significant compared to the
transmitted wavelength [14, 15, 17]. In accordance with
(iv), noseleaf and pinna deformations in horseshoe bats
have been predicted to produce qualitative beampattern
changes [15, 17, 20]. Similar changes have been demon-
strated experimentally with biomimetic reproductions of
noseleaves [21] and pinnae [10, 22]. In these experiments,
the shape deformations resulted in time-variant device
characteristics [21, 23]. In the frequency domain, the
beampatterns typically alternated between a concentra-
tion of sensitivity in a single mainlobe and scattering
among local maxima (sidelobes) [10, 17].

Investigating the impact of these dynamic effects on
the encoding capacity for sensory information requires
four-dimensional characterizations, i.e., emission ampli-
tude or sensitivity gain measured over time, two direction
angles, and frequency. Data of sufficient quantity and
quality for such characterizations is very difficult to ob-
tain from live bats. Therefore, the present work has been
based on two types of datasets: numerical estimates de-
rived from detailed digital models of the natural geome-
tries of the noseleaves and pinnae [17, 22] and measure-
ments taken from biomimetic physical prototypes (either
with full details or simplified) [10, 21, 24]. In total, four
different datasets (Fig. 1) were used as a basis for an
information-theoretic analysis of the dynamics in horse-
shoe bat biosonar system.

To test whether the dynamic shape changes could
be functionally relevant, the sensory encoding perfor-
mance of dynamic shape conformation sequences was
compared to a static reference. Since each continuous
dynamic shape progression was represented by a dis-
cretized sequence of five shape conformations, the static
reference used an equal number of identical static con-
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FIG. 1. Different sample types used to obtain acoustic far-
field (beampattern) data on the emitter and receiver dynamics
of greater horseshoe bat biosonar. NN) Digital noseleaf model
used for computer animation of in-vivo dynamics followed by
numerical analysis, PN) Detailed physical replica of the nose-
leaf created through additive manufacturing (scaled 2×), BP)
Portrait of a greater horseshoe bat, NP) Digital pinna model
used to recreate dynamic behavior of 3d landmarks (shown
as small spheres) obtained from stereo high-speed recordings,
PP) Simplified deformable physical prototype modeled after
the horseshoe bat pinna (scaled 2.5×).

formations. This was done since averaging over multiple
measurements (one for each conformation) with indepen-
dent noise realizations improves the signal-to-noise ratio
(SNR) and hence benefits the sensory encoding perfor-
mance for static and dynamic conformation. To provide a
specific functional advantage, the dynamics must encode
additional sensory information with performance benefits
that go beyond this generic SNR improvement associated
with averaging over repeated measurements.
To test for the encoding of additional sensory informa-

tion, estimates of normalized mutual information [25–28]
were used to quantify the dependence between beampat-
terns associated with different noseleaf and pinna confor-
mations. Mutual information between beampatterns was
estimated based on beampattern gain values that were
mapped into a discrete alphabet using spectral cluster-
ing [29]. A mutual information of zero means that the
two respective beampatterns offer entirely independent
views of the environment and a value of 100% signifies
complete dependence, i.e., the sensory information ob-
tained with one beampattern can be predicted completely
from the information obtained with the other. The nor-
malized mutual information estimates behaved similarly
across all studied datasets: mutual information always
decreased with increasing distance between the respec-
tive conformation stages (Fig. 2). For the beampatterns
of neighboring conformation stages, it did not exceed 45%
(maximum seen in sample NN, averaged over all com-
binations of neighboring conformations). With increas-
ing distance between conformation stages, it decreased
to values below 20% for the most distant stages. These
values indicate a weak dependence between the beam-
patterns produced by different conformation stages and
demonstrate that integrating sensory inputs across differ-
ent stages encodes new, independent sensory information
about the animal’s acoustic environment.
To assess whether the additional information encoded

NN PN

PPNP

0 1 2 3 4 0 1 2 3 4

Distance between shape conformation stages

N
o

rm
al

iz
ed

m
u

tu
al

in
fo

rm
at

io
n

[%
]

100

80

60

40

20

0

0

20

40

60

80

100

FIG. 2. Dynamic changes in noseleaf and pinna shapes result
in a sequence of device characteristics (beampatterns) with
low dependence as measured by mutual information. Bar
height indicates normalized mutual information (in %) as a
function of distance between the respective shape conforma-
tions (averaged over all conformation pairs with the respective
separation value). Error bars indicate the maximum and min-
imum values for mutual information found across all pairs of
conformation stages with the same distance. Distance is mea-
sured on an ordinal scale within a sample of representative
conformations across the structures’ deformation cycle. NN,
PN, NP, PP refer to the samples shown in Fig. 1.
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FIG. 3. Combining stages of a dynamic sensor increases the
directional resolution in the presence of noise. Directional
resolution is quantified by an upper bound on the number of
resolvable directions that is a function of signal-to-noise ratio
(additive white Gaussian noise [30]). The upper bound is ex-
pressed either directly as the maximum number of resolvable
directions (right-hand axis) or as a directional resolution (in
bits, i.e., log

2
of the maximum number of resolvable direc-

tions, left-hand axis). Black: individual sensor conformation
stages, dark gray: effect of averaging signals from an identi-
cal sensor conformation stage five times, light gray: effect of
combining five different sensor conformation stages. NN, PN,
NP, PP refer to the samples as shown in Fig. 1.
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by virtue of the sensor dynamics has a measurable im-
pact on biosonar performance, an upper bound on re-
solving different directions of sound incidence was com-
puted. The bound is based on the concept of Gaussian
channel capacity [30] and gives the maximum number of
directions that can be resolved without error over the
entire direction domain. The number of resolvable direc-
tions is a global measure of resolution; since the method
does not provide a distribution for the resolved direc-
tions, it is possible that the resolution would be much
higher than average in some regions and lower in others.
The bound was computed for a set of lower signal-to-
noise ratios (SNR≤20 dB). As expected, the maximum
number of resolvable directions increased with the SNR
for all shape types (NN, PN, NP, PP) and conformation
stages (Fig. 3). Use of repeated measurements with the
same device conformation stage and independent noise
resulted in a resolution increase that is predicted by the
SNR improvement (∼ 7 dB) achieved by averaging five
samples with independent noise. In contrast, combining
sensory information across different conformation stages
yielded resolution improvements that were substantially
higher than the effects of averaging over repeated mea-
surements from the same device conformation. As the
SNR increased, the gap between the resolutions provided
by averaging and those achieved by integration across dif-
ferent conformation stages widened. At an SNR of 6 dB,
for example, a single measurement with an individual
device conformation yielded a resolution of 3.7 bits (i.e.,
∼13 different directions) on average. Five measurements
from identical conformations improved the upper resolu-
tion bound to 7.5 bits (i.e., ∼181 resolvable directions).
Combining measurements across five different conforma-
tions added another 3.5 bits of resolution and brought
the total number of resolvable directions up to ∼1867.
This effect was even stronger at a higher SNR of 12dB
where using different conformations improved the resolu-
tion bound by 9.5 bits over repeated measurements with
identical configurations, which corresponds to increasing
the upper bound on the number of resolvable directions
from 3100 to 2.2 million.

As a complementary evaluation of how the increased
sensory encoding capacity added by the shape dynam-
ics can impact sensory estimation performance, the lo-
cal accuracy of direction finding was measured by the
Cramér-Rao lower bound (CLRB, [31, 32]) at a higher
SNR (i.e., 40 dB, Fig. 4). The CRLB provides a lower
bound on the estimation error of an unbiased estimator
for target direction. As a local measure, it gives a spa-
tially resolved characterization of system performance.
For each direction in space, an error ellipse can be com-
puted which encloses the set of direction within which a
certain percentage of the estimates will fall. As was the
case for global bound on direction resolution described
above, the CRLB performance bound was substantially
improved by combining information collected across dif-
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FIG. 4. Combining dynamic sensor conformations increases
directional accuracy. Estimation accuracy quantified by
Cramér-Rao lower bound (CRLB). Top row: map of error el-
lipses (90% confidence intervals) for repeated individual sen-
sor conformation stage (left-hand side) and combination of
five different sensor conformation stages (right-hand side).
Error ellipses are drawn on top of the averages over all beam-
patterns gains used in the respective scenario. Bottom row:
distribution of accuracy (major axis of the error ellipses for
the 90% confidence interval). Blue: individual sensor confor-
mation stages, green: effect of averaging the same stage five
times , red: effect of using five different sensor conformation
stages. NN, PN, NP, PP refer to the samples as shown in
Fig. 1.

ferent conformation stages. In all studied datasets, the
maximum value for the lower bound on the standard de-
viation of the estimate, i.e., the length of the major axis
of the error ellipse, was reduced by between 21% (sample
NN) and 38% (sample NP) on average when different con-
formations instead of a single repeated conformation were
used (Fig. 4). In two of the four studied samples (PN and
NP), use of the dynamic conformation sequence substan-
tially reduced the right-hand (i.e., large-error) tail of the
error distribution (Fig. 4). Hence, the sensor dynamics
resulted in a substantial improvement of direction-finding
accuracy, especially in regions where large uncertainties
remained with the static configurations of the shapes.

The results of the present study demonstrate that dy-
namic conformation changes of the noseleaves and pinnae
as seen in horseshoe bats increase the coding capacity
for sensory information substantially. Since this result
is based on a discretized version of the continuous shape
conformation sequence seen in nature, it is likely an un-
derestimate of the true dynamic enhancement of the sen-
sory encoding capacity.

It is noteworthy that the observed effects on the sen-
sory encoding capacity and estimation performance were
qualitatively and quantitatively similar across all four
datasets - despite their very different nature (i.e., phys-
ical versus numerical, detailed versus simplified). The
presence of the coding-capacity effects in data obtained
from numerical predictions as well as from physical mea-
surements renders it unlikely that these results were due
to methodological artifacts, since the two methods used
have little in common and should hence not be subject
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to the same artifacts. The presence of the effects in de-
tailed reproductions of biological shape geometries as well
as in highly simplified biomimetic models suggests that
the results reflect robust fundamental properties of the
sensor dynamics that are not overly sensitive to the fine-
scale details of the noseleaf or pinnae. This robustness
of the effects will be important for potential engineering
applications, because it suggests that the fundamental
dynamic encoding phenomena could be exploited in man-
made sensing systems even if these differed substantially
from the specific biological conformations that inspired
them. Nevertheless, a detailed analysis of the dynamic
shape features seen in horseshoe bats could result in fur-
ther improvements of the sensory-coding capacity.
Here, the utility of the dynamic effects has been

demonstrated in the context of traditional sonar sens-
ing tasks (direction resolution and direction-finding ac-
curacy). While these tasks can be expected to be of piv-
otal importance to any (bio)sonar system, they are al-
most certainly insufficient to explain how biosonar meets
the bats’ sensory information needs in complicated nat-
ural environments. As of now, it remains unknown how
biosonar supports the navigation of horseshoe bats in
their natural environments. This leaves the intriguing
possibility that the dynamics of horseshoe bat biosonar
is a key factor behind some of the animals’ most astound-
ing sensory capabilities that have yet to be understood
and reproduced by engineered systems. Examples of the
latter are the abilities of bats to navigate in dense natural
vegetation [33, 34] or to fly and hunt in dense swarms.
Since the dynamic effects analyzed here add an addi-
tional temporal dimension to the sensors, they could pro-
vide novel ways to address the challenges associated with
these and other sensing tasks. If this is the case, bioin-
spired dynamic principles could allow man-made sensor
technology to master the same challenges and hence close
the remaining performance gap between active sensing in
biology and in engineering.
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[16] H. Schneider and F. P. Möhres, J. Comp. Physiol. A 44,

1 (1960).
[17] L. Gao, S. Balakrishnan, W. He, Z. Yan, and R. Müller,

Phys. Rev. Lett. 107, 214301 (2011).
[18] N. Matsuta, S. Hiryu, E. Fujioka, Y. Yamada,

H. Riquimaroux, and Y. Watanabe, J. Exp. Biol. 216,
1210 (2013).
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