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We measure the field dependence of spin glass free energy barriers in a thin amorphous Ge:Mn film
through the time dependence of the magnetization. After the correlation length ξ(t, T ) has reached
the film thickness L = 155 Å so that the dynamics are activated, we change the initial magnetic
field by δH . In agreement with the scaling behavior exhibited in a companion Letter, we find the
activation energy is increased when δH < 0. The change is proportional to (δH)2 with the addition
of a small (δH)4 term. The magnitude of the change of the spin glass free energy barriers is in near
quantitative agreement with the prediction of a barrier model.
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Introduction. The effect of a magnetic field on spin
glass dynamics has been a source of controversy for al-
most twenty five years. Mean field solutions lead to
a phase transition in the presence of a magnetic field,
the de Almeida-Thouless transition [1], while the droplet
model [2-6] predicts the vanishing of the spin glass state
no matter how small the magnetic field. Though the two
are contradictory, they are difficult to distinguish experi-
mentally [7-10]. For example, both predict a length scale,
L, dependent maximum barrier height, but with differing
dependence upon L (see below). In addition, both pre-
dict a decrease in effective waiting times [11,12] propor-
tional to the square of the magnetic field strength (Refs.
[8] and [13], respectively). The present Letter probes the
nature of these dynamics in the presence of a magnetic
field.

The study of spin glass dynamics, especially in reduced
dimensions, provides a window into the slow response
of disordered and glassy systems [14]. Further, the ap-
proach to critical behavior has analogies with structural
glasses [15]. Characteristic times for spin glass response
can vary from laboratory time scales to impossibly long
times as a consequence of highly degenerate states well
separated in phase space [16].

This Letter reports measurements of the effect of mag-
netic field changes on the free energy barriers in thin
film spin glasses, where the correlation length, ξ(t, T ) at
time t and temperature T is confined by ξ(t, T ) ≤ L,
the film thickness. The number of participating spins N
is order of ∼ (L/a0)3, where a0 is the average distance
between spins. Our results demonstrate experimentally
that spin glass free energy barriers are affected as the
square of magnetic field changes, consistent with [8,13],
plus a small fourth order term. An accompanying Let-
ter, Baity-Jesi et al. [17], using numerical simulations on
Janus II arrives at equivalent conclusions. The magni-
tude of the effect is consistent with a barrier model esti-
mate based on the observed magnetization. A trap model
[18,19] would predict a change in barrier heights linear in
the change of magnetic field. However, at the fields used
in our experiments, it is found to be too small by around
two orders of magnitude from that which we observe.

Spin glass dynamics at the mesoscale (length scales
1 ≤ L ≤ 100 nm) [20] are achievable in thin film multi-
layers [21-24], and have been reported for a Ge:Mn thin
film [25]. The beauty of thin film spin glasses with meso-
scopic thickness L lies with the growth on laboratory
time scales of the spin glass correlation length ξ(t, T )
from ξ(t, T ) ≤ L to ξ(tco, T ) = L for t < tco to t = tco,
defining the crossover time tco. After ξ(t, T ) reaches L,
there is no further growth of ξ(t, T ) at fixed temperature.
The growth of ξ(t, T ) from nucleation is different be-

tween the two models introduced in the first paragraph.
The droplet model [2-6] assumes activated growth and
finds,
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where α is a normalization constant of order unity, τ0 is
an exchange time of the order of ~/(kBTg), and ψ is a
critical exponent. Experiments [26-28] and simulations
[29,30] find values of ψ between 0.65 and 1.1, with most
values close to unity. The spin glass dynamics are acti-
vated when ξ(t, T ) = L with the largest activation en-
ergy,
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The model based on the mean field solution [31-33]
uses a power law growth for ξ(t, T ),

ξ(t, T ) = c1 a0
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)c2(T/Tg)

, (3)

where c1 and c2 are constants determined from experi-
ment. The dynamics are also activated when ξ(t, T ) = L
with the largest activation energy,
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Thus, both models predict activated dynamics when
ξ(t, T ) = L, but with differing dependence upon the
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length scale L. This Letter will not attempt a choice
between models. It suffices to say that what will be re-
ported is the magnetic field dependence of the largest free
energy barrier, the activation energy ∆max(L).
The actual measurements of spin glass dynamics re-

quire the presence of a magnetic field H . If the spin glass
is rapidly cooled from above the spin glass transition
temperature Tg to a quench temperature Tq below Tg in
zero magnetic field, dynamics are generated upon the
application of a magnetic field through measurement of
the zero-field-cooled (ZFC) magnetization MZFC(t,H).
If the spin glass is cooled in a magnetic field from above
Tg to Tq, and the magnetic field is reduced to zero,
the measured magnetization is the thermoremanent
magnetization (TRM) and termed MTRM(t,H). We are
omitting discussion of the waiting time effect [11,12]
because it is irrelevant as long as t ≥ tco. We exhibit
experimental results below of magnetic field changes
upon ∆max(L) for a thin film Ge:Mn (155 Å) spin glass.
After that we analyze the experimental results in terms
of the power law dependence of δ∆max on the change of
magnetic field δH , and then follow by a summary.

Experimental results. The experiments were per-
formed on thin amorphous Ge:Mn (11 at.% Mn) films of
thickness 155 Å with a glass temperature Tg ≈ 24 K [34].
Previous experiments have shown this insulating sys-
tem to exhibit spin glass properties [34,35], not unlike
EuxSr1−xS [36], an insulating canonical spin glass sys-
tem. Further, the behavior of the field-cooled (FC) mag-
netization is very similar to that found for insulating
EuxSr1−xS [36] and the thinnest Cu:Mn films by G. G.
Kenning et al. [21]. All the dynamical measurements [25]
on these films are consistent with the usual spin glass sys-
tems, establishing confidence in the generality of effects
seen in Ge:Mn films.

This amorphous Ge:Mn thin film sample was quenched
to a temperature Tq = 21.5 K in zero magnetic field. The
quench temperature Tq was chosen so that ξ(t, T ) could
grow to the thickness of the sample, L, on a reasonable
laboratory time scale. Previous measurements [25] found
this crossover time to be about tco ≈ 6.8 × 104 sec, or
about 19 hours. In our experiments, after the temper-
ature is stabilized at Tq, a magnetic field H0 = 50 G
is applied, and the system allowed to age for 20 hours.
This ensures that the correlation length has reached the
sample thickness.

During this aging period, the zero-field cooled magneti-
zation,MZFC(t), increases, but the increase is sufficiently
slow that it remains well below the field-cooled value,
MFC, on this time scale. The slope of the irreversible
component of the magnetization, MFC −MZFC(t ≥ tco),
yields ∆max = 37.5 kBTg, as before [25].

The experiment was repeated exactly as above, but the
applied magnetic field (H0 = 50 G) was reduced by δH
after 20 hours. The subsequent measured magnetization
M(t, δH ;H0) is exhibited in Fig. 1 as a function of time
for the representative values δH = -5, -10, and -15 G.
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FIG. 1: Magnetization measurements, M(t, δH ;H0), after
zero-field cooling at 21.5 K, and reducing the original mag-
netic field H0 = 50 G after twenty hours by representative
values δH = -5, -10, and -15 G, as a funtion of time. Also
plotted is the field-cooled magnetization, MFC(H0 + δH), to
which the measured moment is approaching.

In all, experiments using this protocol were performed
with δH = -5, -10, -12.5, -15, and -17.5 G. Activated
behavior is seen in all, with ∆max(L) increasing as the
magnetic field is reduced. The irreversible part of the
magnetization, MFC(H0+ δH)−M(t, δH ;H0) is plotted
in semi-log scale in Fig. 2 for the representative values
δH = -5, -10, and -15 G.

Figs. 1 and 2 display a curious behavior at short
times after the magnetic field change. From Fig. 1,
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FIG. 2: The logarithm of the irreversible part of magnetiza-
tion, log10[MFC(H0+δH)−M(t, δH ;H0)], for the representa-
tive values δH = -5, -10, and -15 G, plotted against the time.
The dashed straight lines, displaying activated behavior, give
rise to the values of ∆max(H0 + δH) displayed in Fig. 3.
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M(t, δH ;H0) initially decreases with time until about
∼20,000 sec, when it turns around and begins to increase
with time, as expected for MZFC(t). This is mirrored in
Fig. 2 with an initial rise inMFC(H0+δH)−M(t, δH ;H0)
out to ∼20,000 sec, after which activated decay is seen.
The system appears to be increasing its irreversible mag-
netization initially after the magnetic field has changed.
The curing time for a return to activated decay for the ir-
reversible behavior is roughly the same as that found for
temperature chaos [25]. Fig. 2 suggests that this curing
time is independent of the magnitude of the reduction in
magnetic field.
For times greater than ∼ 20,000 sec, the decay of

MFC(H0+ δH)−M(t, δH ;H0) is activated (Fig. 2). The
slopes of the decay curves for each value of δH generate
values for ∆max(H0+δH) [25]. Fig. 3 plots δ∆max(δH) =
∆max(H0 + δH) − ∆max(H0) against δH . Two depen-
dences, δ∆max(δH) ∝ δH and δ∆max(δH) ∝ (δH)2, are
plotted along with the data. It is clear from Fig. 3 that
δ∆max varies more rapidly than linear in δH . On the
assumption of higher-order non-linearity in δ∆max(δH),
we have added a small (δH)4 term to the quadratic
fit [17]. The points can also be fit with an analytic form

a1(δH)2/
√

1 + a2(δH)2 [37]. The values of the parame-
ters used for these fitting procedures are given in Table I.
The χ2 goodness-of-fit probability, Q [38], is also listed

in Table I for each of the four proposed dependences.
Not surprisingly, as seen from Fig. 3, it is very small
for δ∆max(δH) ∝ δH . Likewise, it is finite but small
for δ∆max(δH) ∝ (δH)2. The inclusion of the fourth
order term is convincing, with Q ≈ 0.88, though the ad-
ditional fitting parameter of course reduces the degrees
of freedom by one. The analytic fit to the dependence
a1(δH)2/

√

1 + a2(δH)2 has a slightly smaller probabil-
ity, Q ≈ 0.77, but is an arbitrary form. The sum and
substance of Fig. 3 and Table I is simply that the data
do not fit a linear dependence of δ∆max(δH) on δH , but
rather a quadratic relationship with a small fourth order
term.
Previous experiments [8] have used the magnetic field

variation of the effective waiting time to determine the
magnetic field dependence of ∆max. They posit a re-
duction in ∆max through the magnitude of the Zeeman
energy EZ(H) from an effective waiting time teffw through
[their Eq. (4)],

∆max(tw, T )− EZ(H) = kBT
(

ln teffw − ln τ0
)

. (5)

Their experiments were conducted on bulk samples
with a concomitant distribution of length scales L,
and therefore exhibit an average over a distribution of
∆max(L) [24]. Further, the correlation length continues
to increase in time in their experiments, requiring the
use of an effective waiting time to extract the magnetic
field dependence of the barrier heights. Fig. 2 in Ref. [8]
exhibits a quadratic dependence of log teffw vs H2 for
small H , and hence a quadratic reduction in barrier
heights ∆ with magnetic field. This is equivalent to our
extraction of ∆max with (δH)2. However, our experi-
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FIG. 3: Plot of the measured increases of the maximum bar-
rier height, ∆max(H0 + δH) as a function of the reductions
in magnetic field δH . Shown on the figure are curves for the
fit to a linear variation in δH (dotted line), a quadratic vari-
ation in δH (dashed line), and with the addition of a small
fourth order term to the quadratic variation (solid line). The
numerical fitting values are given in Table I.

ments are conducted on a mesoscopic thin film with a
single thickness L. As a consequence, the correlation
length growth terminates at the length scale L. There
is no averaging in our experiments: ∆max(L) is set
by the thin film thickness, enabling a very accurate
determination of the values for δ∆max as a function of
magnetic field change. These differences distinguish the
present set of experiments from those in Ref. [8].

Analysis of experimental results. Because the lower
critical dimension for spin glasses, dℓ ≈ 2.5 [39-41], a
spin glass at dimension d = 3 will exhibit a finite glass
transition temperature Tg, while a spin glass at dimen-
sion d = 2 will have Tg = 0. As a consequence, as out-
lined in Ref. [24], the spin glass correlation length will be
anisotropic at t > tco. The component perpendicular to
the film layer will saturate at ξ⊥ = L, while the parallel
component, ξ‖, experiences d = 2 critical fluctuations. A
scaling form [37], built on the assumption of multiplica-
tive growth consistent with Ref. [24], suggests that ξ‖(T )
saturates at

ξ‖(T ) = k(T )L = b (Tg/T )
ν2dL. (6)

Here, b is a constant of order unity, and ν2d is the usual
d = 2 critical exponent, ν2d ≈ 3.53(7) [42]. The corre-
lated spins thus have a pancake-like structure, with the
parallel dimension larger than the perpendicular dimen-
sion, the former increasing with decreasing temperature.
The volume of the correlated spins is that of the pan-
cake described above, encapsulated in the perpendicular
direction by L and in the parallel direction by the area,
π[ξ‖(Tq)]

2 = πb2L2(Tg/Tq)
2ν2d .
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Fit a1 a2 RMS Error R-squared χ2 goodness-of-fit, Q

a1(δH)1 −7.16× 10−2 G−1 0.291 0.793 2× 10−16

a1(δH)2 5.00× 10−3 G−2 0.111 0.970 0.0663
a1(δH)2 + a2(δH)4 3.01× 10−3 G−2 8.03 × 10−6 G−4 0.048 0.995 0.8787

a1(δH)2√
1+a2(δH)2

3.67× 10−3 G−2 −1.80× 10−3 G−2 0.056 0.994 0.7686

TABLE I: Parameters used for the best fits to the data exhibited in Fig. 3. There are two higher-order non-linear forms,
indistinguishable from one another on Fig. 3. One is a simple sum of quadratic and quartic terms; the other is suggested by the
analysis in the accompanying Letter [17]. The uncertainties of ∆max in Fig. 3 are used as estimates of the standard deviations
for each of the measurements to calculate Q [38].

It is interesting to investigate the magnitude of the
two predictions of the variation of ∆max with magnetic
field change. The trap model [18,19] “associates a typical
Zeeman energy E(∆H) to the field variation ∆H ; ....”
for the reduction of the effective trap depth. They take,

δEZ(δH) ≡ δEZ(N, δH) = mµB
√
N δH. (7)

The magnetic moment M = mµB refers to “single spins,
but also renormalized groups of spins.” Because of the
“random nature of the interactions and the frustration
they cause, the net uncompensated moment for a group
of N spins is of the order of

√
N , ....”. Thus, the trap

model predicts a linear relationship between the change
in the Zeeman energy and the change in magnetic field.
The number of spins, N , contained within the corre-

lated volume in the Ge:Mn 11 at.% 155 Å film (a0 =

5.3 Å) is approximately 170,840, so that
√
N ≈ 413.

Taking m ∼ 1, Eq. (7) reduces to δEZ(δH) ∼ 0.3 K
for δH = −10 G. From Fig. 3, δEZ(δH = −10 G) ∼
0.4 Tg ∼ 10 K, so that Eq. (7) is too small by around
two orders of magnitude. However, our experiments were
performed in significant magnetic fields. The fluctuation
result of Eq. (7) would surely be relevant in experiments
carried out in zero or very small magnetic fields.
Use of Eq. (5) reduces the values of the free energy

barrier ∆ uniformly by the change in the Zeeman energy,
EZ(H). The difference for mesoscopic systems is that the
reduction is independent of time for t ≥ tco. That is, in
an obvious notation, ∆max(L, H0 + δH) is given by:

∆max(L, H0 + δH) = ∆max(L, H0)− δEZ( δH) (8)

and we measure ∆max(L, H0 + δH) directly as described
above. The barrier model [8] sets

EZ(H) = Nχ
FC
H2, (9)

where N “... defines a volume over which the spins
are effectively locked together for barrier hopping, the
radius of which we define as the spin glass correlation
length ξ(t, T )” [8]. In our case, we take the volume to
be π[ξ‖(Tq)]

2 ξ⊥ = πb2L3(Tg/Tq)
2ν2d as before. The field

cooled magnetic susceptibility per spin in [8] was taken
as χ

FC
because they were measuring the time dependence

of the thermoremanent magnetization, MTRM(t). In our
case it is the zero-field-cooled magnetization, MZFC(t).

Given how close MZFC(t) is to MFC in our experiments,
the difference is negligible.
From Fig. 1, the field-cooled magnetic momentMFC ≈

6.4× 10−6 emu for H = 40 G. Using Eq. (9), we get [24],

δEZ = 2Nχ
FC
H δH = 2N

(

MFC

Nt

)

δH

≈ 2MFC

[

πb2L3

(

Tg
Tq

)2ν2d/

Vs

]

δH, (10)

where Nt is the total number of spins in the sample and
Vs = 2.06 × 10−6 cm3, the total volume of the sample,
using the known thickness and estimated area. Using
L = 15.5 nm, b equal to unity, Tg = 24 K, Tq = 21.5 K,
ν2d = 3.53, we find δEZ ∼ 11.4 K for δH = −10 G,
very close to the measured value for δEZ(δH = −10 G)
∼ 10 K in Fig. 3.

Summary. The reduction in the free energy
barrier height responsible for spin glass dynamics at the
mesoscale is measured as a function of magnetic field
change in a 155 Å Ge:Mn 11 at.% thin film. It is found
that the magnitude of the reduction varies as the square
of the change in magnetic field, (δH)2 with a small (δH)4

term. This result is consistent with the scaling laws of
a companion Letter [17]. Quantitative estimates of two
prevalent models are also presented. The magnitude of
the prediction of a trap model appears to be too small
to fit the data by nearly two orders of magnitude for
the magnetic fields used in these experiments. A barrier
model predicated on a change of the maximum barrier
height ∆max(L, H) with magnetic field agrees with the
measurements, both in terms of the relationship to the
change in magnetic field, and nearly quantitatively with
its magnitude.
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(1980); M. Mézard, G. Parisi, N. Sourlas, G. Toulouse,
and M. A. Virasoro, Replica Symmetry-Breaking and
the Nature of the Spin-Glass Phase, J. Phys. (Paris)
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