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In small-scale metallic systems, collective dislocation activity has been correlated with size ef-
fects in strength and with a step-like plastic response under uniaxial compression and tension.
Yielding and plastic flow in these samples is often accompanied by the emergence of multiple dis-
location avalanches. Dislocations might be active pre-yield, but their activity typically cannot be
discerned because of the inherent instrumental noise in detecting equipment. We apply Alternate
Current (AC) load perturbations via Dynamic Mechanical Analysis (DMA) during quasi-static uni-
axial compression experiments on single crystalline Cu nano-pillars with diameters of 500 nm, and
compute dynamic moduli at frequencies 0.1, 0.3, 1, and 10 Hz under progressively higher static
loads until yielding. By tracking the collective aspects of the oscillatory stress-strain-time series in
multiple samples, we observe an evolving dissipative component of the dislocation network response
that signifies the transition from elastic behavior to dislocation avalanches in the globally pre-yield
regime. We postulate that microplasticity, which is associated with the combination of dislocation
avalanches and slow viscoplastic relaxations, is the cause of the dependency of dynamic modulus
on the driving rate and the quasi-static stress. We construct a continuum mesoscopic dislocation
dynamics model to compute the frequency response of stress over strain and obtain a consistent
agreement with experimental observations. The results of our experiments and simulations present
a pathway to discern and quantify correlated dislocation activity in the pre-yield regime of deforming
crystals.

Introduction.–Mechanical deformation of materials is
usually described by continuous, deterministic stress-
strain relations, for examples see Ref. [1]. In the last
decade, Uchic et al. first applied the uni-axial compres-
sion methodology on focused ion beam (FIB)-machined
Ni micro-pillars [2]. Greer and Nix then extended it to Au
nano-pillars [3], and since then the discrete and stochas-
tic deformation of small-scale single-crystalline metals
has been ubiquitously observed, with smaller pillars ex-
hibiting higher yield stresses [4–7]. The large strain
bursts are unambiguously distinguished as serrations in
the stress-strain curves as shown in Fig. 1(a). They have
been mainly attributed to the unique nano-scale plastic-
ity mechanisms, where the operation of individual dis-
location sources, single-arm or surface, governs defor-
mation and strength [8, 9]. The extent of these strain
bursts usually ranges from nanometers to a few microns
[2, 4, 10, 11]. The analysis of strain bursts shows that
the slip size distributions follow power laws [4, 12], with
system-size- [13, 14] and stress- [10, 15] dependent cut-
offs. It is unclear whether smaller strain bursts, unde-
tected by the instrument, are present in the deforma-
tion of such micro- and nano-sized single crystals, espe-
cially prior to the yield point, commonly defined as the
start of the first detected burst, as shown in Fig. 1(a) at
stress σys. While small, these events compose mechani-
cal noise that is imperative to understand and remove for
high-precision experiments, such as the Advanced Laser
Interferometer Gravitational-Wave Observatory (LIGO)
[16, 17] – the impulsive strain events propagated from

the metallic suspension system to the test mass [18] can
introduce background noise which could limit the inter-
ferometer sensitivity.

Using basic forms of mechanical loading, such as a
force- or displacement-controlled compression, careful ex-
amination of the data provided evidence for the presence
of short plastic instabilities before the onset of the obvi-
ous and apparent strain bursts [10, 19–21], e.g. 100 - 400
MPa regime of 500 nm pillars, as shown in Fig. 1(a). The
higher yield stress observed in small-scale samples com-
pared to their macroscopic counterparts can be under-
stood in terms of dislocation starvation, where upon com-
pression, the initially present mobile dislocations have a
higher probability of annihilating at a nearby free sur-
face than multiplying or being entangled with other dis-
locations [22, 23]. This dislocation source exhaustion
mechanism might involve pre-yield dislocation activities.
In-situ transmission electron microscope (TEM) nanoin-
dentation experiments revealed the onset of dislocation
motion before the first obvious displacement excursion
[24, 25]. In-situ Laue micro-diffraction work with micron-
sized Ni sample showed that a dislocation structure forms
at ∼ 0.65 of the yield stress and continues to develop un-
til global yielding is reached [26]. Creep experiments on
single crystals of ice detected acoustic emission events
at resolved shear stresses far below the yield stress [27].
These observations have yet to be connected to consti-
tutive relations and a quantifiable stress-strain response.
Discrete Dislocation Dynamics (DDD) simulations sug-
gest the existence of intermittent events in the pre-yield



regime of crystalline materials [28, 29] and a significant
loading rate effect on strain burst response of nano- and
micro-crystals due to dislocation jamming and relaxation
[30]. Stress-induced probabilistic cross-slip relaxation has
also been associated with several non-trivial aspects of
crystal plasticity [31]. It’s natural to question whether
we can detect and quantify microplasticity in crystals’
pre-yield regime.

Machine noise has been the Achilles’ heel of numerous
experimental nano-mechanical investigations. Attempts
have been made to characterize the machine noise, with
reported values of ∼ 0.2 nm displacement-, ∼ 30 nN
force- noise floor, and a thermal drift of < 0.05 nm/s
for the prevalently used Hysitron TI 950 Triboindenter
in quasi-static mode [32]. In uniaxial compression exper-
iments, a flat nanoindenter tip applies compressive load
to the top of a commonly cylindrical sample, a so-called
micro- or nano-pillar, and the indenter-sample friction,
as well as the electromagnetic assembly responsible for
the load control produce substantial and inevitable ma-
chine noise. In addition, noise caused by thermal drift
sets a limit on the duration of such experiments, which
renders long-time mechanical experiments like cyclical or
fatigue loading, as well as creep tests, virtually impossi-
ble to interpret. Statistical probing is necessary to de-
tect any possible non-linear dislocation activities, which
cause axial displacements below the machine noise. We
apply Dynamic Mechanical Analysis (DMA) at multiple
frequencies that span three orders of magnitude, from 0.1
to 10 Hz, on multiple 500 nm-diameter single crystalline
Cu nano-pillars. We statistically characterize the overall
DMA behavior and compare it with mean-field disloca-
tion depinning predictions.

Experiment.–Cylindrical nano-pillars with diameters of
∼ 500 nm and aspect ratios (height/diameter) of ∼ 3:1
were fabricated following a concentric-circles top-down
methodology using a Focused Ion Beam [14, 33, 34] from
bulk single-crystalline copper (> 99.9999% purity) with

one side polished to a < 30 Å RMS roughness, oriented
in ∼ 〈111〉 direction [35]. Although FIB introduces sur-
face damage to the pillars by forming small dislocation
loops or an amorphous layer [36], it is the initial mi-
crostructure rather than the fabrication technique that
determines the deformation mechanism of small-scale fcc
metals [19]. The nano-mechanical experiments were car-
ried out in a nanoindenter (Triboindenter, Hysitron [32])
equipped with an 8 µm-diameter flat punch diamond tip
custom made specifically for these experiments. Fig. 1(a)
conveys a representative compressive engineering stress-
strain data, with the inset showing the corresponding
time series of load and displacement, zoomed into the
pre-yield regime. In the experiment, we applied a uni-
axial quasi-static load that monotonically increased in
a step-wise fashion to an individual nano-pillar. Small
stress oscillations with the amplitude of 6 µN and a fixed
frequency in the range between 0.1 and 10 Hz were su-
perimposed over the static load to each 15 s step interval.
Before the initiation of each compression experiment we
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FIG. 1: Dynamic Mechanical Analysis on Cu nano-
pillars. (a) Engineering stress vs. strain during DMA mea-
surements on a Cu sample at a frequency of 0.3 Hz; differ-
ent colors separate data taken at different steps of stress-
oscillation segments. The inset shows raw load vs. displace-
ment as a function of time in the pre-yield regime. The over-
laying different color curves are sinusoidal fits for each data set
of oscillation segments, using Eqs. 1a and 1b. (b) SEM images
of an as-fabricated (pre-) and compressed (post-) ∼ 500 nm
diameter Cu pillar with a nominal aspect ratio of 3:1.

waited for > 145 s to equilibrate the in-contact displace-
ment drift and used the last 20 s drift data to estimate
the thermal drift rate for subsequent correction. Only
those experiments where the thermal drift rate was less
than 0.05 nm/s were analyzed. The loading time before
the occurrence of the first large strain event was usually
within the first 200 s for all tests. Fig. 1(b) shows the
representative pre- and post-compression SEM images of
a representative Cu nano-pillar.

The dynamic modulus is defined as the frequency re-

sponse of stress over strain E(ω, σ0) = σ(ω)
ε(ω) , where σ0 is

the applied quasi-static stress and ω = 2πf is the driv-
ing frequency. Using this definition, we can extract the
dynamic modulus from the oscillations that are imposed
at each quasi-static stress σ0 using a frequency domain
analysis. We fit the time series of stress σ(t) and strain
ε(t) using the following form which also includes a linear
drift term:

σf (t) = xrcos(ωt) + xisin(ωt) + σdt+ σ0, (1a)

εf (t) = urcos(ωt) + uisin(ωt) + εdt+ ε0, (1b)
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FIG. 2: (a) Dynamic Modulus vs. Stress. The experi-
mental DMA results on copper and fused silica (FS) 500 nm
pillars. The amplitude A and phase φ of the dynamic modu-
lus values are statistically analyzed from 6 samples for driving
varying from 0.1 Hz to 10 Hz, both plotted versus the global
stress, around which the oscillations were applied. This plot
demonstrates that the dynamic modulus is not constant as
the quasi-static load approaches the yield point, and the de-
viation gets larger with slower driving. (b) DMA results from
the mesoscopic dislocation dynamics simulation.

where xr, xi, σd, σ0, ur, ui, εd, ε0 are fitting parameters for
the stress and strain. The complex dynamic modulus E
can then be calculated as a function of the ω and σ0:

E(ω, σ0) =
xr − ixi
ur − iui

= A(ω, σ0)eiφ(ω,σ0), (2)

where A and φ are the amplitude and phase components
of the dynamic modulus.

We applied this type of DMA using different driving
frequencies: 0.1, 0.3, 1, and 10 Hz, for each quasi-static
load hold and took measurements from 6 samples for
each frequency driving test. We solved for the dynamic
modulus at each quasi-static loading step at the single
driving frequency using the fitting procedure described

above. The quasi-static stress at each step is normal-
ized by the yield stress of the system σys. We binned
amplitude and phase lag for sample statistics. The bin-
ning mean and standard error for amplitude and phase
lag were calculated as a function of the stress bin centers
and are shown for each driving frequency in Fig. 2(a).
This DMA data reveals a maximum of ∼ 70% decrease
in the average amplitude and a maximum of ∼ 60◦ in-
crease in the average phase lag as the applied quasi-static
stress approaches yielding at σ0/σys = 1 (∼ 400 MPa).
This plot also shows that these deviations from elastic
behavior are more pronounced for slower driving frequen-
cies. These results are in stark contrast to the DMA data
collected from the same type of uniaxial compression on
a ∼ 500nm-diameter fused silica nano-pillars, which ex-
hibits a constant amplitude of ∼ 65 GPa and a no-delay
response for the driving frequencies of 1 Hz and 10 Hz.

Simulation.–To reveal the underlying mechanisms that
drive the observed non-trivial loss behavior in Cu as the
applied stress approaches yielding, we constructed a con-
tinuum crystal plasticity model that aims at capturing
the salient aspects of the observed mechanical behav-
ior. This model considers the energetics of two compet-
ing processes: the dislocation-driven abrupt strain jumps
and the slow stress-controlled relaxations towards min-
imum system energy state. To capture both the fast
avalanches and the slow viscoplastic relaxations, we uti-
lized a cellular automaton constitutive microplasticity
model enhanced with an additional continuous-in-time
strain field that follows a viscoplastic constitutive law
[31, 37, 38]. We model the shear strain to consist of
the elastic and plastic components γ = γe + γp. The
elastic term is calculated using Hooke’s law. The plas-
ticity model that captures the plastic term can be re-
alized using detailed continuum plasticity modeling ap-
proaches [1]. It is reasonable to assume that in a single
representative volume element for single-crystalline FCC
crystals, the following criteria hold: i) uniaxial loading
activates one dominant crystallographic slip system, A,
with another system, B, assisting dislocation glide along
A [53] and ii) dislocations carry plastic distortion via
two distinct mechanisms: (a) fast dislocation avalanche-
like glide and (b) slow, stress-relaxation-driven secondary
glide on A caused by the coupled A-B dislocation mech-
anisms (e.g. double cross-slip) [31]. With contributions
from both mechanisms, the total plastic strain can be
expressed as:

γp = γ(a)p + γ(b)p . (3)

In the fast dislocation avalanche-driven mechanism, a
volume element at location r yields a random plastic

strain δγ
(a)
p if the local stress τ(r) is larger than a lo-

cal depinning threshold χ(r) [31, 39, 40], where χ(r) fol-
lows a uniform distribution [41]. After each avalanche,
the threshold value is re-drawn from the same distribu-
tion. On the other hand, the slow relaxation mechanism
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follows a typical constitutive viscoplastic law:

γ̇(b)p =
D

G
(τ(r))n, (4)

where D is the relaxation constant, G is the shear mod-
ulus, and n ∈ [1, 3] < 10 is the critical quantity to de-
fine another timescale which is slow compared to the fast
avalanche process [20].

For numerical simplicity, we apply this methodology to
edge dislocations only, for which the local resolved shear
stress can be explicitly calculated:

τ(r) = τext + τint(r) + τhard(r)

= τ0 + τAsin(ωt) +

∫
d2r′K(r− r′)γp(r

′)− hγp(r),

(5)
where τext is the applied external quasi-static stress com-
bined with the oscillation component, τint is the stress
that accounts for the long-range interactions with other
dislocations, and τhard is the stress that arises from dis-
location hardening. In the expanded form of Eq. 5, K
serves as the interaction kernel for single slip straight
edge dislocations, and h represents a mean-field phe-
nomenological hardening parameter [37, 38]. For the
stress kernels of complete circular dislocation loops or
screws, in principle the results would be unchanged, since
all these kernels are sufficiently long-ranged [39, 46]. The
model implementation is such that the system is meshed
into N ×N elements, with N = 32. We prescribe similar
loading conditions to 8 random initial configurations as
we did in the experiments, with different driving frequen-
cies of 1, 2, 8, and 64 rad/s. The rate equation associated
to Eq. 3 can be numerically solved by Euler integration
with a fixed time step ∆t = 10−2s. Additional simulation
details are provided in Supplemental Materials [41].

Discussion.–Fig. 2(b) shows the same frequency do-
main analysis of the dynamic modulus using simulations
results as the ones shown in Fig. 2(a) for the experimen-
tal data. This qualitative agreement between simulations
and experiments motivates a further quantitative com-
parison. Existing simulations investigated the effect of
cyclic loading on the evolved dislocation network and pre-
dicted a scaling relation between the normalized strain
rate amplitude and the driving frequency, focused on the
mean-field depinning theory framework [28, 47]:

|ε̇|
|σ|
∼ ωκ (6)

where κ = 1 corresponds to a simple harmonic oscilla-
tor, i.e. perfectly elastic behavior, and κ = 0.82 corre-
sponds to a system driven close to the pinning thresh-
old [28, 47]. The strain rate amplitude is normalized
by the stress amplitude, |ε̇|/|σ| which is equivalent to
ω/A, where A is the dynamic modulus amplitude mea-
sured via DMA. Fig. 3 shows the scaling analysis of
the normalized strain rate amplitude vs. driving fre-
quency for the dynamic modulus amplitude calculated
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FIG. 3: Scaling Analysis of the Normalized Strain-
rate Amplitude. (a) The normalized strain rate amplitude
scaling over driving frequency analysis [28] using experimen-
tal DMA data, and (b) simulation DMA data. The figures
show explicitly the fitting for scaling parameter κ using Eq.
6 at different quasi-static stress levels. The inset presents the
measured κ as a function of normalized stress.

from the experiments and simulations at different quasi-
static loads. The insets show the scaling parameter κ
as a function of the normalized stress. These plots con-
vey that at both small and large stress regimes, experi-
ments and simulations produce scaling behaviors that are
in agreement with the mean-field depinning predictions,
and a smooth, microplastic crossover connects these two
extreme regimes. The experiments and simulations re-
veal enhanced microplasticity activities as the system is
stressed close to yielding. The actual mechanism that is
responsible for the increased ‘susceptibility’ to plasticity
can be a thermally activation process like cross-slip, or
the collective dislocation bowing out due to long-range
interactions, i.e. the Andrade mechanism [48].

Summary.–We imposed oscillatory loads in the nomi-
nal elastic regime of the uniaxially compressed 500 nm-
diameter single crystalline Cu nano-pillars. We applied
monotonically increasing stresses above the bulk yield
point of ∼ 10 MPa [49, 50] to investigate the mechan-
ically correlated material response. Analysis of the cu-
mulative oscillatory response reveals a substantial devi-
ation from the nominally perfectly elastic behavior, as
well as an emergent dissipation signature in what has al-
ways been considered pre-yield regime. This finding re-
sembles prior research on amplitude-dependent internal
friction in metallic materials [51, 52]. Our experimen-
tal observations are corroborated by a mesoscale dislo-
cation plasticity model, which accounts for dislocation
avalanches (fast processes) and the viscoplastic response
(slow time scales) during oscillatory loading. We for-
mulate a scaling analysis that shows a smooth transi-
tion of the system from perfect elasticity to dislocation
depinning-driven plasticity that occurs at loads lower
than the global yield stress. This approach represents a
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new pathway to investigate and quantify the abrupt plas-
tic events that emanate from dislocation activities even
in the pre-yield regime, that occur ubiquitously during
deformation of small-scale single crystals below instru-
mental noise levels.

The developed methodology can be applied to charac-
terize pre-yield dislocation dynamics in extensive list of
FCC, BCC, and HCP materials. The micromechanical
study sheds light on detecting crackling noise in macro-
scopic sample subjected to nominal elastic loading. The
observation of such events might lead to better prediction
of plastic yielding and even incipient fracture for struc-
tural materials. The pre-yield mechanical noise itself can
be a hidden problem for instrumentation that requires
high strain sensitivity, e.g. advanced LIGO [16, 17].
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