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Asymmetric structures support different field distributions and electromagnetic responses when 

excited from different directions. Here we show that time-reversal symmetry imposes 

fundamental constraints on their overall response, beyond those dictated by reciprocity. For 

two-port devices, the asymmetry in field distribution for opposite excitations is shown to be 

fundamentally bounded by the reflection at the ports, and the fields are identical everywhere in 

space in the case of full transmission. In multi-port and open scenarios, these bounds have 

implications on radiation and scattering at different ports and towards different directions. 

Beyond their theoretical significance, these results provide relevant insights into the operation of 

nonlinear isolators, metasurfaces and other nanophotonic devices. 

PACS: 41.20.Jb; 42.25.Bs; 11.30.-j; 42.25.Fx 

 

The symmetry of various physical laws under time reversal is at the basis of many physical 

principles [1]. In simple terms, time-reversal symmetry implies that the response of a system 

under a t t→ −  transformation satisfies the same physical laws as the original system. For 

example, the time-reversed response of a time-reversal invariant electromagnetic system is 
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always a solution of Maxwell equations in the same system. The most important consequence in 

classical systems is reciprocity, according to which signal transmission between two points in 

space is the same for both propagation directions [2]-[5], recently inspiring the realization of 

magnet-less electromagnetic and acoustic non-reciprocal devices for full-duplex communication 

systems [6]-[24]. 

Here, we discuss how time-reversal symmetry imposes even stricter constraints on the operation 

of electromagnetic systems, beyond reciprocity. In particular, we show that in arbitrarily 

asymmetric volumes local quantities such as the field intensity and the radiated power from point 

sources cannot take arbitrary values when the structure is probed from different directions. We 

start our analysis with the simple scenario of a two-port lossless structure (Fig. 1a), and then 

move to the case of multiport structures (Fig. 1b), and to objects in free space (Fig. 1c). In all 

these scenarios, we show that the degree of asymmetry in their electromagnetic response 

decreases as the transmission coefficient increases, and it vanishes in the case of perfect 

transmission. We conclude our paper discussing several practical consequences of these findings, 

such as in the operation of nonlinear isolators and the cloaking of directive emitters. 

Consider an arbitrary two-port, lossless and linear network, as in Fig. 1a, with transmission 

coefficient T  (equal when excited from the two ports, due to reciprocity) and reflection 

coefficients 1R  and 2R  at ports 1 and 2, respectively. Since the network is lossless, 1 2R R R= =

. Let the field distribution inside the structure be 1( )E r  and 2( )E r  when excited from ports 1 and 

2 with signals of unitary amplitude, respectively. If we apply a time-reversal operation to the 

case in which the structure is excited from port 1 (top, Fig. 1a), we obtain an inversion of the 

propagation direction for all impinging, reflected and transmitted waves, a complex conjugation 
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of the amplitudes of these waves, and a complex conjugation of the induced field distribution, 

leading to the scenario shown in the bottom of Fig. 1a. Since the structure is lossless, and 

assuming it is not biased by any quantity that is odd-symmetric under time reversal, the internal 

field 1
∗E  in the time-reversed scenario can be expressed using the superposition principle as 

1 1 1 2R T∗ ∗ ∗= +E E E . After some algebraic manipulations [25] (Sec. I), we find  
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Eq. (1) shows that the ratio of field intensities at any point inside the structure for excitation 

from different ports is bounded by quantities that tend to unity as the reflection at the input ports 

decreases (or the transmission increases). In the extreme case of perfect transmission, the internal 

field intensity distribution for excitation from opposite directions is exactly the same anywhere, 

independent of the geometrical asymmetry and complexity of the structure. An analogous 

expression to Eq. (1) was derived in [26] for the decay rates at different ports of a two-port 

single-resonance system. It is possible to show [25] (Sec. II) that this result is a particular case of 

Eq. (1), and our theory extends it to generally complex asymmetric structures, without the single-

resonance restriction, at any frequency and, quite surprisingly, to any single point in space. 

In order to validate Eq. (1), we have simulated an asymmetric two-port system consisting of a 

multimodal cavity inside a parallel-plate waveguide, as in Fig. 2a. The walls of the waveguide 

and the cavity are perfect electric conductors (PEC) and the cavity is filled with a high-

permittivity dielectric ( 12rε = ). The structure’s asymmetry is achieved through apertures of 

different width and position at opposite sides of the cavity. We excite at a frequency where 

reflection is non-zero, as it can be deduced from the standing-wave patterns on the side of the 
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waveguide from which the excitation is applied. In this case, the fields for excitation from 

opposite sides are very different, as expected in an asymmetric multimodal cavity. Then, one 

may wonder whether it is possible to maintain this field asymmetry while increasing the 

transmission coefficient through the structure. Without changing the geometrical asymmetry, we 

add a matching layer in the form of a reactive surface, consisting of identical metallic patches on 

either side of a thin dielectric layer, at some distance from the right-hand side of the cavity, as in 

Fig. 2b. By controlling the geometry of the anti-reflection surface and its distance from the 

cavity, it is possible to impedance match the asymmetric cavity to the waveguide and achieve 

unitary transmission (zero reflection). Due to reciprocity, the matching works for excitation from 

either side. Despite the fact that we have not modified the original asymmetry of the system, the 

field intensity profile for excitation from opposite directions is now identical at any point in the 

waveguide, in full agreement with Eq. (1) for 0R = , showing that the bounds in Eq. (1) are not 

related to geometrical asymmetries, but they are a fundamental consequence of time-reversal 

symmetry. Finally, Fig. 2c presents 2 2
2 1E E  versus R  for the system in Fig. 2b, calculated at 

25 points inside the cavity for 101 frequency points over a band around the frequency of unitary 

transmission. The width of this frequency range is chosen so that the reflection coefficient varies 

from 0 to 1. It can be seen that in all cases and at all points 2 2
2 1E E  lies within the bounds 

predicted by Eq. (1), validating our theoretical analysis. 

Consider now a multi-port system, as the one in Fig. 1b. We first assume zero loss, but, as we 

rigorously show in [25] (Sec. IV), the derived results also apply to lossy systems, since loss can 

be interpreted as one of the output ports of a generic multi-port network. When the system is 

excited by a signal with unitary amplitude from port 1, assuming that all ports are matched, the 
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outgoing signal at the n-th port has scattering parameter 1nS . After applying a time-reversal 

operation, we can write the field at any point in the structure in the time-reversed scenario as a 

superposition of the fields induced by impinging signals 1nS ∗ : 1 11 1 21 2 1N NS S S∗ ∗ ∗ ∗…+ += +E E E E , 

where nE  is the field for excitation from the n-th port. After some algebraic manipulations [25] 

(Sec. III), we find 
2 2

21 1
21 212 2 2
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2 2 2 2
21 N∑ = + ++…E E E E . Interestingly, 2

nE  may be interpreted as the radiated power nP  

at the n-th port from a randomly-oriented dipole source located at the position in which we 

sample nE : 2 22 48n nP pω= E , where p  is the dipole moment [25] (Sec. VI). The total 

radiated power by the dipole is given by 
1

2 22 24N
nn

P P pω
=

= = Σ∑ E , yielding 

 2
1 2 21 1 2 2112 ,e e S e e S≤ −+ −   (2) 

where n ne P P=  is the radiation efficiency at the n-th port. Eq. (2) shows that the difference in 

radiation efficiencies between any two ports is restricted by the transmission coefficient between 

the same ports. In the case of zero transmission between the ports ( 21 0S = ), Eq. (2) becomes 

1 2 1e e+ ≤  and it is satisfied for any value of 1e  and 2e  allowed by power conservation, 

indicating that in such a case radiation at different ports is independent. On the other hand, for 

unitary transmission ( 21 1S = ), Eq. (2) becomes 1 2 1 22 0e e e e+ − ≤ , and it can be satisfied only 

for 1 2e e= , indicating full correlation of radiation at the two ports. For intermediate values of 

21S , the radiation at different ports is partially correlated, and it increases as 21S  increases. The 
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result in Eq. (2) has relevant implications not only for waveguide problems, but also in the case 

of optical systems excited by thermal or quantum emitters, and for the design of unidirectional 

lasers and absorbers without back-reflecting mirrors [27]. Indeed, our theory proves that the 

energy emitted towards different directions by a small emitter is necessarily bound by the way 

the two directions are coupled together, with relevant implications in nanophotonic engineering. 

Furthermore, Eq. (2) can be extended to lossy systems [25] (Sec. IV), as it may intuitively be 

understood from the fact that absorption can be seen as an additional output channel. 

We validated these theoretical results using full-wave simulations of a multi-port, multi-modal 

asymmetric cavity, as in Fig. 3a. The structure is two-dimensional with perfect-magnetic-

conducting (PMC) walls and filled with air. The electric field is assumed to have a single out-of-

plane component, and the external waveguides support propagation of only the fundamental 

transverse electromagnetic mode. Fig. 3b shows the calculated S-parameters of such a structure 

for excitation from port 1, showing the existence of multiple resonances and significant 

asymmetry of transmission at different ports. The large range of values for the transmission 

coefficient allows validating Eq. (2) for different transmission levels and, therefore, different 

degrees of correlation for the radiation efficiency of an arbitrarily located point emitter at 

different ports. Fig. 3c shows 1e  versus ne , with 1n ≠ , for three different values of 1nS . For 

each value of 1nS , we determine the corresponding frequencies from Fig. 3b and simulate the 

structure at these frequencies assuming an emitter at different points in the cavity. In all cases the 

radiation efficiency lies within the bounds predicted by Eq. (2) (grey regions).  

These multi-port bounds have interesting consequences also in the case of periodic metasurfaces 

designed to tailor thermal or optical emission. In particular, they imply that the difference 
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between the radiation efficiency of a point emitter close to the metasurface along two different 

directions is restricted by the transmission coefficient 21S   between these directions. For random 

directions, 21 0S =  and no restriction exists. However, if the directions belong to the set of 

diffraction orders determined by the metasurface’s periodicity, 21S  is typically non-zero, and 1e  

and 2e  are related to each other through Eq. (2). Consider, for instance, a reflective metasurface 

with periodicity smaller than the diffraction limit. Such a metasurface supports only one 

diffraction order and, for zero loss, leads to unitary specular reflection for any incidence 

direction. Then, Eq. (2) implies that a point emitter close to this surface necessarily exhibits the 

same radiation efficiency for symmetric directions with respect to the normal direction, i.e., the 

emitter has a symmetric radiation pattern, regardless of any arbitrary asymmetry in the 

metasurface’s unit cell. The multi-port bounds in the case of metasurfaces reveal the conditions 

to obtain directive emission, again with several implications in nanophotonic engineering. 

This multi-port scenario may be further generalized to the case of a system in free-space open to 

radiation, as in Fig. 1c. Let 0( )E k  be the impinging electric field of a plane wave with unitary 

amplitude, polarization vector 0ε̂  and wave-vector 0k . Furthermore, let 0 0(ˆ , )nS kε  be the 

amplitude of the n-th scattered spherical-wave harmonic, normalized so that 2
0 0( ,ˆ )nS ε k  is the 

scattered power carried by the harmonic. Applying a time-reversal transformation to this 

problem results in a system excited by a plane-wave of unitary amplitude, polarization vector 0ˆ∗ε  

and wave-vector 0−k , and incoming spherical-wave harmonics with amplitudes 0 0ˆ( , )nS ∗ ε k . 

Similar to the case of single- and multi-port systems, we get 

0 0 0 0 0 0( )ˆ ˆ, ( ( , )ˆ), nn
n

S∗ ∗ ∗= − +∑E k E k k Eε ε ε , where nE  is the field induced by the n-th incident 
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harmonic. Performing some algebraic manipulations and considering the definition of radiation 

gain for an arbitrarily-oriented point emitter [43], as detailed in [25] (Sec. VI), yields 

 
2 2

0 0 0 0 ext 0 0 ext 0 0( , ) ( ) ( , ) ( )ˆ ˆ ˆ ˆ
4

, , ,G Gλ σ σ
π

∗ ∗≤⎡ ⎤− − = −⎣ ⎦k kε ε kε kε   (3) 

where ext 0 0ˆ( , )σ ε k  is the extinction cross-section of the scatterer [1] and 0( ,ˆ )G ε k  is the emitter’s 

gain along the direction k  and for the 0ε̂  polarization of the far field [28]. In Eq. (3) we used 

ext 0 0 ext 0 0( , ) ( )ˆ ˆ ,σ σ ∗= −εk kε , a result of reciprocity [29]. Eq. (3) represents an upper bound for the 

difference in gain for opposite directions – a measure of the scattering directionality of the object 

– versus the extinction cross-section, highlighting a direct relation between radiation and 

scattering properties of an arbitrary object, stemming from time-reversal symmetry. This 

limitation may be overcome only using active or non-reciprocal materials. 

In order to provide further insights and validate Eq. (3), we analyze the case of an infinite 

dielectric cylinder excited by a line source, as in Fig. 4a. Since the structure is circularly 

symmetric, different field profiles, and subsequently different radiation gain for different 

directions, can be induced by exciting multiple resonant modes. For this reason, the permittivity 

and radius of the cylinder are selected to operate between the TM0 and TM1 resonances of the 

cylinder. The corresponding radiation pattern is presented in Fig. 4b for a source at 10.5sr r=  and 

180sϕ =  deg, showing strong directionality. We now cover the cylinder with a metamaterial 

shell, as in Fig. 4c, aimed at suppressing its scattering cross-section for z-polarized waves ( 0ˆ ˆ=ε z

) [30]-[32]. From Eq. (3), we expect 0 0( ) ( )G G= −k k , i.e., the radiation pattern becomes 

symmetric in opposite directions. Fig. 4d shows indeed that the radiation pattern with the 
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metamaterial shell for the same source as in Fig. 4b is symmetric, highlighting how cloaking 

essentially destroys radiation directivity for excitation by an internal point source. 

In addition to their theoretical significance, the results presented in this Letter are important from 

a practical perspective in the design of a plethora of linear and nonlinear nanophotonic devices. 

As an example of the consequence of these results in nonlinear problems, consider the case of 

nonlinear isolators, which achieve non-reciprocal transmission based on materials with intensity-

dependent permittivity [34]-[41]. Their operation is based on the fact that, by design, the induced 

field distribution is asymmetrical for excitation from different ports, and therefore the 

transmission coefficients for opposite excitations can be made largely different based on the 

different permittivity distribution in the device when excited from opposite sides. Large non-

reciprocity is induced if, for instance, the structure is designed to operate in a high-intensity, 

strongly-nonlinear regime for one propagation direction, for which the transmission coefficient is 

very small because of the strong excitation of a resonance, and a low-intensity, quasi-linear 

regime for the other propagation direction, for which the transmission coefficient is large 

because the resonance is weakly excited. The bounds presented here show that in the low-

intensity (linear) regime there is a fundamental trade-off between large transmission and induced 

field asymmetry, and therefore directly impose fundamental constraints on the insertion loss and 

transmission contrast of nonlinear isolators, a conclusion consistent with the metrics reported so 

far in the literature for these devices. We have discussed how the bounds presented here have 

also implications in the design of directive thermal, optical and quantum emitters, metasurfaces, 

lasers and absorbers, and reveal the extent up to which such systems can be cloaked and at the 

same time exhibit directional emission properties.  

This work was supported by AFOSR, NSF and the Simons Foundation. 
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Figures 

 

Figure 1. (a) Two-port asymmetric structure without loss. The effect of time reversal is 

presented at the bottom. (b) Multi-port asymmetric structure. (c) Asymmetric object in free space 

illuminated by a plane wave propagating along the -axis. 
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Figure 2. Numerical validation of the time-reversal-symmetry bound for two-port structures. (a) 

Multi-modal cavity inside a parallel-plate waveguide. All the walls are PEC and the material of 

the cavity has 12rε = . The cavity parameters are 1 0.9h a= , 2 0.7h a= , 1w a= . The operation 

frequency is 0.35c a  and the electric field is polarized along the y-axis with amplitude 1 V/m. 

(b) Same as in (a), but with an additional matching layer at the right-hand side of the cavity, 

which consists of metallic patches on both sides of a dielectric substrate with permittivity 

12rε = . The parameters are 1.449d a= , 2 0.1w a= , and 3 0.81h a= . The colorbar scale is 

different than in (a) in order to properly show the details of the fields, which are stronger in this 

case. (c) Field ratio versus reflectivity for excitation from opposite sides for the structure in (b) at 

25 equally-distributed points inside the cavity and 101 equally-distributed frequencies over a 

band centered at frequency 0.35c a  and with width 0.03c a . The red lines correspond to the 

upper and lower bounds in Eq. (1) for the field intensity ratio. All simulation have been 

performed with Comsol Multiphysics. 
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Figure 3. Multi-port and multi-modal asymmetric structure. (a) The structure is infinitely-

extended along the -direction, is filled with air and has PMC walls. The cavity vertices are 

1 (0,0)P =  m, 2 ( 0.1,0.28)P = −  m, 3 (0.29,0.51)P =  m, 4 (0.44,0.32)P =  m, and 5 (0.3,0)P =  m. 

The width of the external channels is 0.03  m. (b) S-parameters for excitation from port 1. (c) 

Radiation efficiency at different ports for a dipole source located at six different evenly 

distributed points inside the cavity, including the center of mass 5

1
5kk

O P
=

=∑  and the 

midpoints between O and the cavity vertices. The shaded regions correspond to the radiation 

efficiencies allowed by time-reversal symmetry. The simulations were carried out through 

Comsol Multiphysics for z-polarized incident waves with amplitude 1 V/m and uniform profile 

across the waveguide cross-sections.  
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Figure 4. (a) Circular cylindrical scatterer in free-space, with permittivity 1 12ε = , permeability 

1 1μ = , and radius 1 0.0795r λ= , where λ  is the free-space wavelength. (b) Radiation pattern for 

a line source located at point P with polar coordinates 10.5sr r=  and 180 degsϕ = . (c) The 

cylinder in (a) covered with a metamaterial shell with permittivity 2 3ε = − , permeability 

2 4.5μ = − , and radius 2 11.45r r= , resulting in a scattering cross-section reduction from 0.64λ  to 

0.01λ . (d) Radiation pattern for the same source as in (b), but with the metamaterial cover. 


