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We examine a dipolar-gas model to address fundamental issues regarding the correspondence be-
tween classical chaos and quantum observations in ultracold dipolar collisions. The theoretical model
consists of a short-range Lennard-Jones potential well with an anisotropic, long-range dipole-dipole
interaction between two atoms. Both the classical and quantum dynamics are explored for the same
Hamiltonian of the system. The classical chaotic scattering is revealed by the fractals developed in
the scattering function (defined as the final atom separation as a function of initial conditions), while
the quantum chaotic features lead to repulsion of the eigenphases from the corresponding quantum
S-matrix. The nearest-eigenphase-spacing statistics have an intermediate behavior between the
Poisson and the Wigner-Dyson distributions. The character of the distribution can be controlled by
changing an effective Planck constant or the dipole moment. The degree of quantum chaos shows a
good correspondence with the overall average of classical scattering function. The results presented
here also provide helpful insights for understanding the role of the inherent dipole-dipole interaction
in the currently-ongoing experiments on ultracold collisions of highly-magnetic atoms.

Anisotropic interactions inherent in ultracold dipolar
gases are sources of various exotic phenomena, which
has attracted numerous investigations from different per-
spectives, including those in few-body physics[1–4], ultra-
cold chemistry[5–7], many-body physics[8–14] and quan-
tum computation[15–17]. The recent work on ultra-
cold collisions of highly magnetic atoms like lanthanides
has shown a very dense spectrum of Fano-Feshbach
resonances[18–20]. The statistics of nearest-neighbour
spacings between resonances closely follow the Wigner-
Dyson distribution[20], which indicates that the corre-
sponding classical dynamics may be chaotic after the
Bohigas-Giannoni-Schmit (BGS) conjecture[21], there-
fore arousing further interest in quantum chaos of ultra-
cold dipolar collisions[22–28]. The dipole-dipole inter-
action (DDI), as a typical long-range, anisotropic force,
exists universally in dipolar gases[29]. It couples the in-
ternal dipole moments with the relative spatial motion
between two colliding dipoles, which promises, in prin-
ciple, a possible complex nonlinear dynamics. However,
the recent examination on the Hamiltonian spectral prop-
erties concluded that quantum chaotic features observed
in ultracold erbium or dysprosium gases originate from
a short-range dispersion potential[22], rather than from
the long-range DDI.

At the current stage, studies on the DDI-induced dy-
namics become fundamentally important, and a series of
critical questions are awaiting to be resolved on the the-
oretical side. These questions include: (1) whether the
classical counterpart has some chaotic features; (2) if it
does, then it means a breakdown of the BGS conjecture,
and what the physical origin is; (3) for further exploring
and understanding the quantum chaos in ultracold dipo-
lar collisions, it is natural and essential to ask how and
when we can expect a certain correspondence between
quantum and classical worlds. So far, all reported results
are confined to quantum calculations[18, 20, 22–28], and

the classical counterpart is absent.
In this letter, we directly address the fundamental

issues regarding the correspondence between classical
chaos and quantum dynamics. Our work is based on
a dipolar-gas model without anisotropic dispersion po-
tentials, which represents an effort to understand the
role of the inherent DDI in ultracold dipolar collisions,
instead of reproducing the chaotic spectra as in the
experiment[20, 22]. We demonstrate that the DDI alone
can cause classical chaotic scattering, characterized by
fractals in the scattering function R(θi, t) which is defined
using the final atom separationR as a function of initially
incoming angles θi after a time t of propagation. For
quantum dynamics, we examine the scattering S-matrix
instead of spectral properties of the relevant Hamilto-
nian, because the S-matrix is intrinsic to the scattering
process and its eigenphases can clearly exhibit the effects
of quantum chaotic scattering[30–32]. Using physical pa-
rameters adapted from ultracold Er gases, we do not ob-
serve an obvious signature of quantum chaos, consistent
with previous studies[22]. By appropriately varying an
effective Planck constant or the dipole moment, we ob-
serve eigenphase repulsion, and a good correspondence
is established between the degree of quantum chaos and
the overall average of classical scattering function.
The theoretical model consists of two dipoles scattered

in a Lennard-Jones potential well V0(R)[Fig. 1(a)],

H =
p2

2m
+ V0(R) +

C

R3

[
j1 · j2 − 3(j1 · R̂)(j2 · R̂)

]
, (1)

where m and p are, respectively, the reduced mass and
the relative momentum. V0(R) = C12/R

12−C6/R
6 with

two adjustable parametersC12 and C6. For clarity, C and
ji (i = 1, 2) are referred to as the dipole-dipole coupling
strength and the inherent spin of the colliding dipoles,
respectively. For magnetic atoms as in Refs.[20, 22], the
internal spin j comes from the total atomic angular mo-
mentum. C = (gµB)

2/c2 , where g, µB and c denote
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FIG. 1: (Color online) Schematic model (a) and scattering
fractals (b)-(f). (b) Scattering-fractal formation as the prop-
agation time t evolves. The initial distance R(t = 0) between
two dipoles is 6000 a.u. and t0 = 1012 a.u. as a time unit.
The values of R(t) are indicated by different colors, which
have been scaled using the maximum distance value at each
time instant. (c)-(f) R(t) as a function of initial angles θi,
showing the well development of scattering fractals into sub-
tle digits of initial conditions after a long time evolution.

the atomic g-factor, the Bohr magneton and the speed
of light, respectively. Atomic units are used throughout
this work unless specified otherwise. The relative spa-
tial motion (R, p) follows classical Hamiltonian equa-
tions, and evolution equations for each spin can be ob-
tained from the classical analog of quantum Ehrenfest
equations (see Ref. [33] for an interesting discussion on
the classical analog of quantum spin). During the scat-
tering, each dipole moment conserves its amplitude but
its orientation couples with the orbital angular momen-
tum L = R × p due to the DDI, and the total angular
momentum J = L+j1+j2 is conserved. After all the con-
stants of motion are accounted, the classical phase space
spanned by (R, p, j1, j2) is reduced to 6 dimensions.

We assume the two dipoles to be initially along the
negative z-axis with the same amplitude j [Fig. 1(a)].
The dipoles are generally expected to move around each
other when they get close, even if L is initially zero as
in an incoming s-wave scattering quantum mechanically.
Depending on the relative angle between j(t) and R(t),
the anisotropic DDI can be attractive or repulsive, which
bounces classical trajectories R(t) in and out in a com-
plex manner for certain incoming initial angles θi relative
to the z-axis. Fig. 1(b) shows the formation of fractals
in the classical scattering function R(θi, t) for parame-
ters adapted from ultracold 168Er gases at 400 nK[20],

where the two dipoles are started with an incoming ra-
dial velocity, i.e. L = 0, with the collision energy de-
termined by the temperature. C6 = 1723 a.u., j = 6,
g = 1.164 and m = 167.9324/2.0 amu (also used as
a mass unit m0 hereafter). The value of C12 was set
to be 8.0783 × 1017 a.u. for convenience. A fourth-
order Runge-Kutta algorithm with adaptive time steps
was used in propagating trajectories[34]. At each time
instant, the scattering function was scaled by its maxi-
mum value. The local minima indicated by blue color in
Fig. 1(b) trace out the formation of scattering fractals
with time, and the corresponding trajectories experience
larger number of bounces (between outer and inner turn-
ing points each time) than those already escaped. At
t = 1.9t0 with t0 = 1012 a.u., the large-scale pattern of
fractals forms after a sufficient number of bounces. The
remaining trajectories experience more and more bounces
as time evolves, and the fractal structure develops into
smaller and smaller digits of θi, as shown in Figs. 1(c)-
(f), eventually resulting in a high sensitivity of long-time
evolution on θi in the fractal region and featuring the
chaotic scattering dynamics[35–42]. The following dis-
cussions will be merged with our efforts in searching the
possible imprints of these fractals in quantum dynamics.
Quantum complex systems are customarily studied by

assuming some statistical correlations regarding the in-
teractions among numerous states involved in a given ba-
sis. It constitutes the basic idea in random matrix the-
ory (RMT), where the Hamiltonian matrix describing the
physical system is assumed to have random entries statis-
tically independent and satisfying a certain transforma-
tion criteria. For instance, real symmetric matrices with
their entries from Gaussian orthogonal ensemble (GOE)
are appropriate for a fully-chaotic bound system having
time-reversal invariant symmetry[43, 44], as in analyz-
ing the Hamiltonian spectra of complex nuclei[45]. On
the other hand, the quantum chaotic scattering is usu-
ally explored through the corresponding S-matrix. For a
fully chaotic system, it is preferable to use random uni-
tary symmetric matrices with Dyson’s circular orthogo-
nal ensemble (COE) [45–49], which predicts a Wigner-
Dyson distribution for the nearest-eigenphase distribu-
tion (NED) [46, 50]. A physical system may have its
S-matrix’s eigenphases follow an intermediate statistics
between Poisson and Wigner-Dyson distributions. The
NED curve can be fitted by[50, 51]

P (s) = A(β)
(πs

2

)β

e−
π2β

16
s2−(B(β)−πβ

4 )s, (2)

where β is the Izrailev parameter, indicating the degree
of quantum chaos. A(β) and B(β) are numerically deter-
mined through the relation

∫
∞

0 P (s)ds =
∫
∞

0 sP (s)ds =
1. In Eq. (2) β runs from 0 (Poisson distribution) to 1
(COE) with time-reversal invariance.
We compute the quantum S-matrix for our current

model in Eq. (1) based on the coupled-channel method
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described elsewhere [52–54]. Since the total angular
momentum J = j12 + L and its projection M on the
laboratory frame are good quantum numbers, where
j12 = j1 + j2, we employ the basis |j1j2j12LJM〉 to solve
the corresponding time-independent Schrödinger equa-
tion. In our simulations, the scattering occurs from
an initially incoming s-wave, and the number of chan-
nels used is Lmax = 2j1 + 2j2 for a given J and M ,
guaranteeing that all relevant channels are included.
The relevant coupled-channel equations are solved using
the hybrid log-derivative-Airy propagator method[55].
The log-derivative propagation starts from 2 a.u. to
Rswtch = 1000 a.u. with a stepsize of 0.05/

√
ξ a.u., where

ξ denotes the mass factor in units of m0. For R > Rswtch

the Airy propagator takes over with a progressively larger
stepsize with a scaling factor of 1.05. The radial bound-
ary Rmax is well in the asymptotic regime, which varies
from 6000 a.u. to 75000 a.u., mainly determined by
the DDI strength. At Rmax the numerical solutions are
matched with the asymptotic scattering wave function
for computing the S-matrix. With these parameters our
simulations are converged to better than 1%.

Our quantum calculations using parameters adapted
from ultracold Er gases give no obvious quantum chaotic
features, which is the same result as in Ref. [22]. This
is in contrast with the classical chaotic scattering re-
vealed in Fig. 1. The absence of quantum-classical cor-
respondence arises from two dynamical differences be-
tween quantum and classical mechanics. (a) The clas-
sical phase-space structure, like the fractals and chaotic
region, can evolve into arbitrarily small volume, which
may be easily washed out as a result of the quantum un-
certainty principle, related to the Planck constant ~. (b)
The coupling between internal spins and spatial motion
causes a continuous change of the classical angular mo-
mentum, but the quantum number of angular momentum
and its components can only change by integer intervals.
These ideas suggest that the quantum imprints of scatter-
ing fractals, as in Fig. 1, could be found by decreasing an
effective Planck constant ~̃ intrinsic to the corresponding
quantum dynamics. For the Hamiltonian in Eq. (1), if
we increase the mass m of colliding particles, it is equiv-
alent to decrease an effective Planck constant according
to ~̃ = ~

√
m0/m but keeping m = m0 as for 168Er. On

the other hand, a larger spin j also makes the observa-
tion of quantum chaos more plausible. Both the smaller
~̃ and the larger j values have the same effect, namely,
increasing the ratio of the involved classical actions to
the relevant Planck constant, which makes quantum dy-
namics approach the semiclassical limit.

Figure 2 shows the statistics of quantum S-matrix’s
NED and its eigenvector distribution for ~̃ = ~/

√
1000

and j1 = j2 = 12, with the results for ~̃ = ~ also shown
as a comparison. In Fig. 2(a), the height of the first
bin close to zero spacing (s = 0) is largely suppressed

FIG. 2: (Color online) Nearest-eigenphase distribution (NED)
and eigenvector localization of quantum S-matrix for the
Hamiltonian in Eq. (1), where j1 = j2 = 12 at 400 nK.
(a) The NED with s in units of the mean spacing π/N . The
dotted line, the dashed curve and the solid-black line repre-
sent, respectively, the Poisson distribution (β = 0), the RMT
prediction under the COE (β = 1) and the prediction with
β = 0.38 in Eq. (2). (b) The eigenvector distribution com-
paring with the COE prediction (dashed curve), where the
values of xn denote the components of all eigenvectors cal-
culated from the S-matrix on the basis of |j1j2j12LJM〉. In

both (a) and (b), the results for ~̃ = ~ and ~̃ = ~/
√
1000 are

depicted by yellow bars and blue bars, respectively. The green
colors are the overlap area between yellow and blue bars.

for ~̃ = ~/
√
1000, showing a clear eigenphase repulsion.

Note that the height of the first bin (= 2.78) for ~̃ = ~ is
higher than 1, which has been previously observed and
identified as the Shnirelman peak [56]. The statistics of

nearest eigenphase spacings for ~̃ = ~/
√
1000 in Fig. 1(a)

show a fairly close behavior to the COE predictions, and
the NED curve can be fitted very well using Eq. (2),
giving β = 0.38. In Fig. 2(b) it is clear that the details

of eigenvector distributions for ~̃ = ~ are largely differ-
ent from the COE predictions, echoed by the Shnirelman
peak in the eigenphase statistics, while the eigenvector
distribution with ~̃ = ~/

√
1000 is closer to the COE pre-

dictions except for a spike near xn = 0 where an effect of
eigenvector localization may be involved as discussed in
Ref. [50]. These results in Fig. 2, with Fig. 1 together,
suggest that the classical chaotic region containing scat-
tering fractals occupies a small portion in the whole phase
space, and the corresponding quantum-chaotic features
could be achieved by scaling the quantum uncertainty
degree through an effective Planck constant ~̃.

In Fig. 3 we explore the relevant physical parameter
space as a systematic inspection of quantum-classical cor-
respondence in the DDI-induced dynamics. Fig. 3(a), (c)
and (e) shows the variation of classical scattering func-
tion [R(t) vs θi] with the parameters j, C and C12, re-
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FIG. 3: (Color online) Quantum-classical correspondence and
parameter dependence. (a), (c) and (e) give the relative dis-
tances R as a function of θi by varying the spin, the DDI
strength and the parameter C12, respectively. The scattering
function for each specific parameter has been scaled as in Fig.
1 (b), and the heavy colored area indicates the scattering frac-
tal region. C0 denotes the DDI strength between 168Er atoms.
b = 8.0783 a.u.. Solid points in (b), (d) and (f) represent the
calculated β values with error bars at 1σ standard deviation.
Solid lines give the classical global quantity ̟ defined from
the overall average of classical scattering function, which was
shifted by an arbitrary constant to compare with the β values.

spectively. The quantum calculations with an effective
Planck constant ~̃ = ~/

√
1000 are presented by the solid

points in Fig. 3(b), (d) and (f), using the fitted β value in
Eq. (2) as an indicator for the degree of quantum chaos.
j = 12 in Fig. 3(c)-(f). The values of C12 and C are the
same as in Fig. 1 if not being varied in Fig. 3. All of
the classical results were calculated after the large-scale
fractals already formed as in Fig. 1(b), and the initially
incoming distance was chosen in the asymptotic regime.
Specifically, we used R(t = 0) = 15000 a.u. and t = 5t0
for Fig. 3(a); R(t = 0) = 80000 a.u. and t = 24t0 for
Fig. 3(c); R(t = 0) = 10000 a.u. and t = 3.5t0 for Fig.
3(e). The scattering fractals are sketched by the heavy
colored area, which shows complex but interesting struc-
tures. Our calculations show that much richer leaf struc-
tures can further develop out, for example, by decreasing
C12 in Fig. 3(c) or increasing C value in Fig. 3(e).

To compare with the quantum results quantitatively,
we use an overall average of classical scattering function,
i.e, the average distance R of 104 trajectories initially
launched on the uniform grid in cos(θi) from 0 to 1, to de-
fine a global variable ̟ = 1−R/Rmax with Rmax denot-

ing the maximum value of R in the full parameter range
explored. This global quantity represents an averaged
relative trapping distance, related to the trapped trajec-
tories in fractal basins. A larger ̟ indicates that more
scattering trajectories are trapped in a short distance be-
tween the two colliding dipoles. As demonstrated in Fig.
3(b), (d) and (f), the classical ̟ values display a very
similar behavior in the parameter space as the quantum
β values. This agreement is somewhat surprising but
clearly reveals a certain correspondence between classi-
cal and quantum dynamics, which requires more work
and insights in future. From Fig.3, at least three imme-
diate observations can be reached as follows. First, both
the classical and quantum dynamics display a nontrivial
parameter dependence. In particular, the DDI-induced
dynamics does not simply become more chaotic by in-
creasing the internal dipole moment, the DDI strength
or the potential-well depth. Second, the degree of quan-
tum chaos is generally suppressed for sufficiently small
spins [Fig. 3(b)], though the corresponding classical dy-
namics exhibits obvious chaotic scattering. Furthermore,
there is a fluctuation observed in β values around the
classical averaged curve, especially in Fig. 3(f), which
is partly associated with the scaling invariant symmetry
of the Hamiltonian in Eq. (1). Our preliminary exam-
ination shows that the classical scattering function only
experiences a subtle change by varying C and j simul-
taneously but keeping their product Cj2 constant, and
the classical curve as in Fig. 3(f) is almost unchanged.
However, the quantum calculations as in Fig. 2 is more
sensitive to the specific C and j values individually.

In summary, we have explored the DDI-induced dy-
namics from both the classical and quantum viewpoints.
Based on a dipolar gas model, the classical counter-
part of quantum dynamics has been studied for the first
time, where the embedded classical chaotic scattering has
been confirmed by the universal existence of scattering
fractals. The signature of quantum chaos has been ex-
amined in the eigenphase statistics of the quantum S
matrix, which represents an alternative and straightfor-
ward perspective beyond existing studies on the Hamil-
tonian spectral properties[22–28]. It has been shown
that, for a sufficiently large dipole moment and a rela-
tively small effective Planck constant, a good correspon-
dence can be established between the degree of quantum
chaos and an overall average of classical scattering func-
tion, otherwise the observed degree of quantum chaos is
largely suppressed. This direct correspondence provides
further insights beyond the Berry-Robnik semiclassical
picture[57, 58] in understanding the first-principle con-
nections between classical chaotic scattering and quan-
tum observations, especially with the coupling between
internal degrees of freedom and the external dynamics.

The results presented here open a possible way to un-
derstand the role of the inherent DDI in ultracold dipo-
lar collisions. These ideas hold important implications
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for understanding the complex chaotic scattering in the
currently-ongoing experiments[20, 22], and also provide
valuable insights for future investigations on the quantum
chaos in ultracold dipolar gases. Following our current
model study, more realistic consideration by including
an additional dispersion potential is in progress. Gen-
eralizations to many other practical situations are also
expected, such as collisions of magnetic dipoles in an ex-
ternal magnetic field, as well as the electric dipolar scat-
tering between polar molecules.
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