aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Microscopic Phase-Space Exploration Modeling of
~{258}Fm Spontaneous Fission
Yusuke Tanimura, Denis Lacroix, and Sakir Ayik
Phys. Rev. Lett. 118, 152501 — Published 12 April 2017
DOI: 10.1103/PhysRevlett.118.152501


http://dx.doi.org/10.1103/PhysRevLett.118.152501

Microscopic phase-space exploration modeling of ?**Fm spontaneous fission

Yusuke Tanimura,'>* Denis Lacroix," T and Sakir Ayik?

! Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud,
Université Paris-Saclay, F-91406 Orsay Cedezr, France
2 Physics Department, Tennessee Technological University, Cookeville, TN 88505, USA
(Dated: March 15, 2017)

We show that the total kinetic energy (TKE) of nuclei after the spontaneous fission of 2°*Fm
can be well reproduced using simple assumptions on the quantum collective phase-space explored

by the nucleus after passing the fission barrier.

Assuming energy conservation and phase-space

exploration according to the stochastic mean-field approach, a set of initial densities is generated.
Each density is then evolved in time using the nuclear time-dependent density-functional theory with
pairing. This approach goes beyond mean-field by allowing spontaneous symmetry breaking as well
as a wider dynamical phase-space exploration leading to larger fluctuations in collective space. The
total kinetic energy and mass distributions are calculated. New information on the fission process:
fluctuations in scission time, strong correlation between TKE and collective deformation as well as
pre-scission particle emission, are obtained. We conclude that fluctuations of TKE and mass are

triggered by quantum fluctuations.

PACS numbers: 21.60.Jz, 24.75.+i, 25.85.Ca, 27.90.+b

The dynamical modeling of a nuclear Fermi quan-
tum droplet that spontaneously breaks into two pieces
represents one of the most exciting challenges of nu-
clear physics today. Beside its description, a deeper
microscopic understanding of spontaneous fission (SF)
is of great importance to form the heaviest elements
at the frontier of the nuclear chart [1-3] or to further
improve our knowledge about the competition between
the r-process and fission during the primordial nucle-
osynthesis [4]. Motivated also by its importance in nu-
clear energy production, intensive experimental efforts
have been made to accumulate precise measurements
[5>-9]. In recent years, an increasing effort was made
to remove empirical ingredients that are employed in
macroscopic modeling of fission and use microscopic the-
ories [10, 11]. The nuclear Density Functional Theory
(DFT) is a suitable starting point to describe some as-
pects related to the large amplitude collective motion
(LACM). A minimal information obtained from DFT is
the adiabatic collective energy landscape [11]. One chal-
lenge to describe spontaneous fission (SF) is the neces-
sity to explicitly treat the evolution as a quantum dy-
namic in collective space. Progresses have been made
with the Time-Dependent Generator Coordinate Method
(TDGCM) [12-14]. This theory by treating quantally
collective degrees of freedom (DOF) is promising. How-
ever, the adiabatic assumption often made becomes crit-
ical especially close to scission [15]. Dissipation of the
collective motion into internal excitations also plays a
key role to understand the excitation energy and kinetic
energy sharing during fragments separation [16]. Under-
standing this dissipation requires to include many-body
states beyond the adiabatic limit [17]. It is yet unclear
how the pre-scission neutron and proton emissions can
be incorporated in the TDGCM.

The nuclear time-dependent DFT (TDDFT) over-
comes some of these limitations. With recently devel-
oped symmetry unrestricted codes, LACM with arbitrary
shapes [18-26] can be described including one-body dissi-
pation as well as particle evaporation. As noted in [27], it
can describe the average kinetic energy of fragments after
fission. The inclusion of pairing effects significantly ex-
tend the applicability of this approach [15, 28]. As shown
in Ref. [29] using TDHFB, the treatment of dynamical
pairing has solved the threshold anomaly [15, 28, 30, 31],
i.e. the fact that in a range of deformation larger than
the barrier position, heavy systems were not fissioning in
TDDFT when pairing was neglected. Contrary to our
earlier belief [28], this problem is also solved using the
TDHF+BCS approximation. TDDFT with pairing has
also its intrinsic limitation that prevents it to properly de-
scribe the fission: (i) although it is a quantum theory in
single-particle space, it gives a quasi-classical description
of the collective motion. As a consequence, fluctuations
of one-body DOF's are strongly underestimated. (ii) The
absence of spontaneous symmetry breaking also prevents
proper description of fission [32].

We propose a novel method able to describe quan-
tum fluctuations and spontaneous symmetry breaking to-
gether with the possibility to obtain fully microscopically
fragment mass and TKE distributions in SF. The method
we use to go beyond mean-field theory is based on the fact
that quantum and thermal effects can be simulated by a
sampling of initial conditions followed by quasi-classical
evolutions, here TDDFT being considered as such. Sim-
ilar strategy were used with success in quantum optics
[33], cold atoms [34] or more recently particle physics [35].
In nuclear physics this approach, called stochastic mean
field [36], has been originally introduced such that initial
fluctuations in collective space are reproduced through



fluctuations of the initial one-body density. In a series
of works, it was shown that it surprisingly well accounts
for correlations beyond mean-field [37-39] while treating
properly the dynamic close to a spontaneous symmetry
breaking [38]. It is also able to include approximately
many-body correlation to all orders by connecting the
evolution to the BBGKY hierarchy [40]. Some formal
and practical aspects are reviewed in Ref. [41]. Although
the stochastic mean-field technique was applied to simple
models [37-39, 42] or to obtain expressions of transport
coefficients [40, 43-46], we present here the first applica-
tion to a realistic physical phenomena where the phase-
space sampling is explicitly made.

We consider the SF of 2°*Fm that was used as a bench-
mark for TDDFT [15, 28]. The adiabatic energy land-
scape is shown in Fig. 1 of Ref. [15] and is given with
additional information in Fig. 1 of [47]. This landscape
was obtained using the HF+BCS approximation with the
EVS8 program [48]. The SLy4d interaction [18] is used in
the mean-field together with a constant-G pairing as in
Refs. [15, 28]. Following a strategy similar to Ref. [49],
we suppose that the SF can be separated into two steps.
First, the tunneling through the fission barrier up to a
deformation QM and, second, the evolution through scis-
sion leading to fission. We apply our method to describe
the second step. We assume that the first step is suf-
ficiently slow so that the adiabatic limit is meaningful.
We further suppose that all the extra energy above the
potential energy is converted into internal excitation en-
ergy E* of the fissioning nucleus. The excitation energies
taken in our calculations are illustrated for different Qi
in Fig. 1 of [47], assuming that the total energy is 1 MeV
above the DFT ground state located at QS = 32 barn.

For a given QM value, the excitation induces in-
ternal fluctuations in single-particle DOFs. To mimic
these fluctuations, we use the stochastic mean-field tech-
nique [36]. We consider the adiabatic quasi-particle vac-
uum |¥(QIM)) and associated one-body density p =
> leini(pil. {les)} denotes the complete canonical
basis. From this information, one can construct an en-
semble of one-body densities p(™ (ty), where (n) labels a
specific event, followed by a set of independent TDDFT
evolutions. The statistical properties of p(™ are given
by following the original prescription [36] and assum-
ing that the one-body density is given by p(”)(t) =
iy 1ol (s, where i)
(n
ij

are Gaussian random num-

bers verifying p ) = di;n; and

—
5055 5001 = 566350 [na(1 = my) + (1= m)l. (1)
5p(™) denotes here the deviation around the mean value.
Thus there are as many gaussian random numbers as
the number of components p;; such that n;(1 — n;) or
n;(1—n;) is non-zero. We suppose in practice that fluctu-

ations only occur between single-particle states in a nar-

row window of energy Ae centered at the Fermi energy.
The window size is fixed using energetic argument: for
each initial condition, one calculates the associated DFT
energy £(p(™). The window is then adjusted so that the
phase-space average on the energy fulfill the condition
E*(QIM) ~ &(p) — E(p(). Here, the last term iden-
tifies with the adiabatic energy. The energy windows,
taken equal for proton and neutron, are displayed in Fig.
1 of [47]. Here, we have neglected possible fluctuations
in the anomalous density [37].

In our approach, fluctuations only stems from the fluc-
tuations in the initial density. Each initial density is then
evolved in time using the TDDFT solver. The evolu-
tions have been performed including dynamical pairing
using the TDHF3D+BCS code [25] generalized to treat
non-diagonal matrix elements of the one-body density.
The treatment of full density matrix requires extra nu-
merical efforts due to the increase of complexity in the
different fields entering in the functional. Generalized ex-
pressions of these fields are given in [47]. Note that the
TDHF+BCS approach is obtained from TDHFB by ne-
glecting some components of TDHFB. This approxima-
tion leads to specific difficulties [50]. It however includes
in a reasonable way pairing effects on static nuclear prop-
erties and solves the threshold anomaly. By reducing sig-
nificantly the numerical cost compared to TDHFB, it ap-
pears today as the best compromise to envisage several
hundreds of trajectories as proposed here. The coordi-
nate space is discretized with a mesh size of Ar = 0.8 fm
within a box of the size 48.8 x 48.8 x 26.4 fm®. The time
step in the dynamic is taken to be At = 1.5 x 10724 s,

Initial fluctuations propagate in time and lead to a
variety of final density profiles. Eq. (1) does not pre-
suppose that selected DOFs contain more information
than others. Any type of deformation can be accessed in
time and most spacial symmetries can be spontaneously
broken. Besides these improvements, probability distri-
butions of any one-body observables A, can be obtained
using the set of values A = Tr(Ap(™). Mean values
A and fluctuation 0% can then be also deduced by per-
forming the classical phase-space average over different
trajectories. 350 and 512 TDDFT trajectories have been
performed for Qi = 160 and 125 barn, respectively. The
lowest value is inside the region where TDDFT without
pairing does not lead to fission. At this position many
single-particle crossing occurs (see Fig. 1 of Ref. [47]).
The second deformation is at the TDDFT fission thresh-
old and most single-particle crossing already occurred
at lower deformation. Accordingly, we were anticipating
very different final TKE and mass distribution depend-
ing on QM. This is not what we observed when quantum
fluctuations are included. We assume that the system
has fissioned if the distance between the two fragments
reaches 26 fm before ¢ = 4500 fm/c.

For each fissioning event, one can get the masses of
fragments and by adding the Coulomb energy, recon-
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FIG. 1. TKE (a) and fragment mass (b) distributions ob-
tained starting from Q¥ = 160 barn (shaded area) and 125
barn (dashed line). The solid line is the experimental data
[61]. In (a) the arrow indicated the mean TKE obtained in
[28]. In the inset is shown the correlation between the average
TKE and heaviest fragment mass (red squares). Comparison
is made with results of the scission point model [52] in dotted
and dot-dashed lines and 2*’Fm data [53] in solid line.

struct the TKE. The TKE and fragment mass distribu-
tions after the fission of 2°®Fm are compared in Fig. 1
to the experimental data of Ref. [51]. The TKE distri-
bution is well reproduced as well as its correlation with
the heaviest fragment mass (inset of Fig. 1). For masses,
while fluctuations are increased by a factor of 2 com-
pared to the original TDDF'T, the results still underesti-
mate most asymmetric fission. It is interesting to observe
that the TKE can be fairly well reproduced without in-
voking the role of the asymmetric fission mode as it is
usually assumed [54]. Even if the reproduction of mass is
a semi-success, to the best of our knowledge, this is the
first time the TKE of SF is reproduced by a fully micro-
scopic theory. The mean and variance of TKE obtained
are Ergg = 211 MeV and og = 19 MeV to be com-
pared with the experimental references Frkxg = 215.5
MeV and o = 19.3 MeV. We also display in Fig. 1 the
distributions obtained for QI = 125 barn. This illus-
trates that the distribution is almost insensitive to the
starting configuration over a rather large range of initial
deformation. However, if the Qi is taken closer to the
scission point, as shown in Fig. 3 of [47], the agreement
of TKE distribution with the data deteriorates, indicat-
ing the subtle effect of dissipation leading to a complex
balance between internal excitation and fragment accel-
eration before reaching scission.

It is worth mentioning that the effect of dynamical
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FIG. 2. Distribution of the time elapsed from Qi = 125 barn
to the scission point including (shaded area) or not (solid
line) dynamical pairing. The time to reach scission using
TDDFT with dynamical pairing and without initial fluctua-
tion is shown in the inset as a function of initial deformation.

pairing is significantly washed out when including initial
fluctuations. To illustrate this, we also performed evo-
lutions with initial fluctuations but neglecting dynamical
pairing, i.e. we froze the occupation numbers during evo-
lution. This case, referred below as ”without dynamical
pairing”, is systematically shown below. A first conclu-
sion, is that, even if dynamical pairing is now neglected,
the account for initial fluctuation is also enough to solve
the threshold anomaly contrary to TDDFT without ini-
tial fluctuations. Indeed, by construction initial density
fluctuations also induce jumps in single-particle space
leading to fission. A second conclusion is that the frag-
ment TKE and mass yields are essentially unaffected by
dynamical pairing as soon as initial fluctuations are in-
cluded (see Fig. 2 of [47]).

Important aspects that are scarcely known experimen-
tally can be inferred from our calculation. We show in
Fig. 2, the distribution of time needed to reach scis-
sion point. We see two bumps in the time distribution
that might stems from the non-trivial behavior of the
scission time as a function of Q¥ already in TDDFT
without fluctuations (inset of Fig. 2). Indeed, after a
sharp decrease of this time up to Qi ~ 130 b, this time
increases again up to 160 b and then decreases again.
This underlines the complexity of the collective paths
that stems from the possibility to access various shapes
during the evolution leading to energy exchange between
collective and single-particle DOF's and ultimately to dis-
sipation. To illustrate this effect, we display in Fig. 3,
the distribution of quadrupole 82 and octupole 83 defor-
mation parameters [55, 56] of fragments. Fragments are
deformed at and close to the scission point. This defor-
mation relaxes as the two fragments escapes from each
others. Several interesting features are seen in Fig. 3.
First, the scission preferentially occurs when both frag-
ments are prolate together with large octupole deforma-
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FIG. 3. Calculated distributions of quadrupole 32 (a) and
octupole B3 (b) deformation parameters of fragments at scis-
sion point (shaded area) and at 26 fm (black solid line). The
insets (c) (resp. (e)) shows the correlation between the final
TKE and B2 (resp. 33) at scission. The insets (d) (resp. (f))
shows the event by event correlation at scission between the
B2 (resp. fBs) of the heaviest (H) nucleus and the B2 (resp.
B3) of the lightest (L) nucleus.

tion. In addition, from the insets of Fig. 3, a strong
correlation between the final TKE and the deformations
of fragments is seen. The deformation behaviors directly
indicate that a part of TKE dissipates into excitation en-
ergies of the fragments, which makes the large variation
of the final TKE measured experimentally.

Since the system is excited, it can cool down by parti-
cle emission. In TDDFT, particles can be emitted to the
continuum. These particles are then removed from the
calculation by adding a small absorbing imaginary poten-
tial at the boundary of the mesh leading to a decreasing
of the total mass A (t) = Tr(p™(t)). The number of
evaporated particles as a function of time is then esti-
mated event-by event by simply making the difference
between A(™(¢) and the initial mass. Fig. 4 shows the
probability distribution of the number of emitted protons
and neutrons before scission. Note that this procedure
leads to a continuous distribution of mass, with eventu-
ally non-integer values of A at final time. The dis-
tribution in Fig. 4 is obtained assuming a binning AA
of one unit mass around integer mass values. Neutron
emission is obviously favored due to (i) the absence of
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FIG. 4. Probability distribution of the number Ny of neu-
trons (red shaded area) and protons (blue shaded area) emit-
ted before reaching scission. Neutron (resp. proton) distribu-
tion are shifted by -0.5 (resp +0.5) unit for display reasons.
The equivalent distribution obtained without dynamical pair-
ing are also shown for neutron (solid line) and proton (dashed
line).

Coulomb barrier, (ii) the favorable N/Z ratio of the fis-
sioning nucleus. We see that there is a non negligible
chance to emit particles in the early stage of fission.

In this letter, we present a novel microscopic approach
to SF. We assume that, after the system passes the bar-
rier, the initial phase-space explored in collective space is
fixed by simple hypothesis on energy conservation. This
approach, applied to 2°8Fm is providing for the first time
a fully microscopic description of the fragment TKE dis-
tribution after fission and gives unique microscopic infor-
mation on the fission process. Scission time fluctuations,
intrinsic deformation, pre-scission neutron/proton emis-
sions are analyzed. We note that the mass asymmetry
after fission is still underestimated. This could be traced
back to the energy criteria used to sample initial condi-
tions. Indeed, from Fig. 2 of Ref. [57], we see that the
initial energy is too low to classically access the asymmet-
ric path. Increasing the energy should allow more asym-
metric shape. To check this hypothesis we also performed
a set of TDDFT calculation with Qi = 160 b and higher
average excitation energy (see Fig. 4 of [47]). The mass
asymmetry is much better reproduced while the TKE is
shifted to lower energy. This result is very promising al-
though it also shows that getting back more asymmetric
fission might degrade the agreement on TKE. Increas-
ing the energy is however not justified and one should
normally include the proper quantum weight of different
paths. For SF, this weight is directly linked to the tun-
neling probability through the collective fission barrier.
In the near future, it might be interesting to couple our
approach with the method used in Ref. [49] to obtain
the tunneling probability. Another important issue to be
clarified is the dependence of the results with respect to
the parameters entering in the functional and for instance
to redo the same calculation using for instance globally
optimized UNEDFx functionals [58, 59].
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