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Dynamically correcting a cnot gate for any systematic logical error

F. A. Calderon-Vargas∗ and J. P. Kestner
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We derive a set of composite pulse sequences that generate cnot gates and correct all systematic
errors within the logical subspace to arbitrary order. These sequences are applicable for any two-
qubit interaction Hamiltonian, and make no assumptions about the underlying noise mechanism
except that it is constant on the timescale of the operation. We do assume access to high-fidelity
single-qubit gates, so single-qubit gate imperfections eventually limit the achievable fidelity. How-
ever, since single-qubit gates generally have much higher fidelities than two-qubit gates in practice,
these pulse sequences offer useful dynamical correction for a wide range of coupled qubit systems.

PACS numbers: 03.67.Pp, 03.65.Yz, 03.67.Bg

Scalable fault tolerant quantum computing requires
gate operations with errors below the quantum error cor-
rection threshold, with lower errors allowing more effi-
cient scaling. A significant source of error in many set-
tings is coherent, systematic gate error. In particular,
maximally entangling two-qubit operations tend to have
significantly worse fidelities than single-qubit operations,
for instance due to weak interactions requiring a long
gate time in the presence of low-frequency noise. Such
unknown systematic errors may be compensated using
composite pulse sequences [1–4], where a desired oper-
ation is replaced by a set of imperfect pulses in such a
way that the systematic errors inherent in each pulse can-
cel with each other. A feature of composite sequences is
that their analytical construction allows great generality,
and they have been applied in NMR [5], trapped ions [6],
nitrogen-vacancy centers in diamond [7], electron spins
in semiconductor quantum dots [8], quantum optics [9],
atom interferometry [10], etc.

However, most of the progress with this approach has
been made on single-qubit gates, and there is no general
two-qubit sequence able to produce an entangling gate
corrected to leading order in every possible systematic
error. In fact, there is a “no-go” theorem for black-box
dynamical correction [11], requiring detailed knowledge
of the relationships between the errors of each component
of a composite sequence. Some sequences circumvent this
by correcting only a limited subset of errors using an iso-
morphism between the SU(2) generators and a subgroup
of the SU(4) generators [12, 13]. Alternatively, the term
isolation approach [14] recovers the generality of the error
suppression, but by a factor of the inverse of the number
of pulses rather than nulling first or higher order terms in
the noise, and that requires many more pulses to achieve
the same level of performance as an order-by-order ap-
proach at small error rates.

Another approach is to use optimal control theory to
numerically optimize performance for a specific system
[15–17]. This has been highly successful, particularly in
NMR [18], and the resulting pulses, though they rarely
provide much physical insight, tend to be much shorter,
lower power, and produce higher gate fidelities at the

cost of system-independence. One must be able to write
down the full master equation in order to do the numer-
ics, and unknown correlations between the noise and the
control cannot be handled in an open-loop process. Such
numerical techniques also can be complicated by con-
trol constraints that introduce local traps into the search
landscape [19]. We shall focus on the complementary an-
alytical approach. Thus, the prime use for our results
will be in cases where one has limited knowledge of the
underlying physical noise and control mechanisms, highly
constrained control, or both, especially in an open-loop
setting.

In this letter, we present a family of general composite
pulse sequences that generate cnot gates compensated
for all systematic errors to arbitrary order using as a
building block any single imperfect entangling gate, while
only assuming access to high-fidelity single-qubit opera-
tions. The assumption of negligible errors in the local
gates opens a loophole in the no-go theorem [11], similar
in spirit to the exploitation of a “robust operating point”
in Ref. [20]. The purpose of only employing a single non-
local gate is to guarantee that all systematic errors en-
tering the sequence are identical, though unknown. This
makes our treatment highly compatible and modular, be-
ing impervious to the details of the qubit system and the
method by which the gates are performed. Thus, unlike
the application of standard local dynamical decoupling
sequences during entanglement [21], our approach does
not require local noise nor instantaneous pulses. Each
part of the sequence may be performed in whatever way
is experimentally convenient; the modular construction
does not assume any particular form. This feature al-
lows it to be used in conjunction with optimal control
theory or other dynamical correction methods if desired,
for instance using numerically shaped pulses to optimally
produce the components of the sequence or else using our
sequence to inform the trial pulse input to a numerical
search algorithm, or even provide a second boost to the
two-qubit gate fidelity after an initial improvement using
particular experimental techniques such as active cancel-
lation tones [22].

The pulse sequences are composed using repetitions



2

of the nonlocal gate (θ)ZZ = exp
[
−i θ2σZZ

]
, which, re-

gardless of the form of the two-qubit interaction Hamil-
tonian, can be generated by one or more applications of
the evolution operator [23, 24] along with appropriate
single-qubit gates obtained from Cartan decomposition
[25]. The family of composite pulse sequences is formed
by the sequential application of (θ)ZZ interleaved with lo-
cal π-rotations σij ≡ σi ⊗ σj , with i, j = {I,X, Y, Z}. In
this letter we first introduce various composite sequences
capable of correcting various subsets of systematic er-
rors and then we nest those sequences to form a com-
pletely general sequence that corrects any systematic er-
ror and generates a first-order error-free cnot gate using
no more than 120 nonlocal gates. This sequence can it-
self be nested to correct errors up to any order.

As a starting point, we represent the error in a noisy
realization of the building block (θ)ZZ by expanding it
to first order as

(θ)ZZ = exp

[
−iθ

2
σZZ

]I + i
∑

i,j={I,X,Y,Z}

δijσij

 ,

(1)
where δij is hereafter referred to as the error term in the
ij error channel.

As a warm-up, consider the simplest possible sequence,
formed by inserting a local π-rotation, σab, hereafter re-
ferred to as an echo pulse, in between two applications
of the noisy entangling operation, (θ)ZZ . To generate
an entangling operation, one should choose a σab that
commutes with σZZ since the anticommuting alternative
would simply produce a purely local operation. The re-
sult, up to first order in the errors, is

U (2)
ab [(θ)ZZ ] = (θ)ZZ σab (θ)ZZ σab = exp

[
−i2θ

2
σZZ

]

×

I + i
∑
i,j

δij

(
σabσijσab + (θ)

†
ZZ σij (θ)ZZ

) , (2)

where the bracketed term on the lhs indicates the non-
local rotation used to build the sequence. Hence, this
sequence corrects all error channels that simultaneously
commute with the entangling operation and anticommute
with the echo pulse, [σij , σZZ ] = {σij , σab} = 0. In
fact, this is clearly true not just to first order, but to
all orders. This simple sequence is already known [26]
and has appeared in both theory [14] and experimental
work [27, 28]. We call this a length-2 sequence, where by
“length-n” we mean a sequence having n applications of
the noisy entangling operation.

Furthermore, by placing this length-2 pulse sequence
(2) inside a second length-2 sequence that uses an echo
pulse that anticommutes with the first pulse, one pro-
duces a length-4 sequence that exactly cancels all error
channels that commute with σZZ , excluding the coupling
error δZZ itself. (Note that it is thus not actually nec-

essary for the controlled part of the building block to be
strictly a ZZ rotation when using the length-4 sequence,
as long as the other generators in the exponent commute
with σZZ .) Choosing θ = π/4 for length-2 or θ = π/8
for length-4, the result of the sequence is locally equiva-
lent to a cnot. Then it is straightforward to apply the
two-qubit variant of the BB1 pulse sequence [12] to also
cancel the ZZ error channel to second order.

Now we turn our attention to canceling, to leading or-
der, the error channels that do not commute with σZZ .
By analogy with the previous case, we focus our attention
on a sequence of the form

σ
(n)
echo (θ)ZZ σ

(n)
echoσ

(n−1)
echo (θ)ZZ σ

(n−1)
echo . . . σ

(1)
echo (θ)ZZ σ

(1)
echo

= exp

[
−iθ

2

(
n∑
l=1

ξl

)
σZZ

]

×

I + i
∑
i,j

′
δijσij

n∑
m=1

ζijm exp

[
−iθ

(
m−1∑
l=1

ξl

)
σZZ

] ,

(3)

where σ
(m)
echo denotes local π-rotations of the form σab, the

primed sum indicates that we only include error channels
that anticommute with σZZ , and

ξl ≡

{
+1 if

[
σ
(l)
echo, σZZ

]
= 0

−1 if {σ(l)
echo, σZZ} = 0

, (4)

ζijm ≡

{
+1 if

[
σ
(m)
echo, σij

]
= 0

−1 if {σ(m)
echo, σij} = 0

. (5)

Setting the real and imaginary part of the error term
in Eq. (3) to equal zero requires the two equations

ζij1 +

n∑
m=2

ζijm cos

[
m−1∑
l=1

ξlθ

]
= 0

n∑
m=2

ζijm sin

[
m−1∑
l=1

ξlθ

]
= 0

(6)

to hold for each error channel corrected. For lengths
n = 3 and n = 4, we have found solutions that cancel
some but not all error terms. With n = 5, though, by
choosing echo pulses such that all ξl = 1, ζij2 = ζij4 ,

ζij1 = ζij5 , and using Chebyshev’s recursive formula for
cosine and sine of multiple angles we simplify Eq. (6) to
the single condition

ζij3 + ζij4 2 cos θ + ζij5
(
4 cos2 θ − 2

)
= 0. (7)

There are real solutions for θ that satisfy this equa-
tion for all error terms as long as the echo pulses are
taken such that either ζij3 = ∓1 and ζij4 = ζij5 = ±1 or

ζij5 = ∓1 and ζij3 = ζij4 = ±1; we proceed with the for-
mer choice since it gives the smaller value of θ, and hence,
presumably, the faster implementation. This solution is
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θ0 = arccos
[
1
4

(√
13− 1

)]
≈ 0.27π. The corresponding

σ
(l)
echo in Eq. (3) are σ

(1,2,4,5)
echo = I and σ

(3)
echo = σZZ .

Therefore, we have found a length-5 sequence that cor-
rects all anticommuting error channels to first order,

U (5) [(θ0)ZZ ] = (θ0)ZZ (θ0)ZZ σZZ (θ0)ZZ σZZ (θ0)ZZ (θ0)ZZ

= exp

[
−i5θ0

2
σZZ

] (
I +O

(
δ2anticomm

))
,

(8)
where the above neglects commuting errors.

Now we combine the length-5 sequence (8) above with
the length-2 sequence (2) that addresses commuting er-
rors to correct both types of errors at the same time. For
instance, nesting a single length-2 sequence, with a total
rotation angle equal to θ0, within the length-5 pulse se-
quence produces a length-10 sequence, U (10) [(θ0/2)ZZ ] =

U (5)
[
U (2)
ab [(θ0/2)ZZ ]

]
, with three remaining error terms

to leading order: δZZ , δab, and δZZ·ab. Of course, for
a specific physical system, if one can arrange for those
terms to be negligible, one need not go further. But one
may remove all non-ZZ error channels with a length-20
sequence,

U (20)

[(
θ0
4

)
ZZ

]
=U (5)

[
U (2)
XX

[
U (2)
ZI

[(
θ0
4

)
ZZ

]]]
= exp

[
−i5θ0

2
σZZ

] (
I +O

(
δ2non-ZZ

))
.

(9)
It is worth noting that the order in which we nest the

length-2 and length-5 sequences can be interchanged in
the combined sequences discussed above, giving us cor-
recting sequences that require a smaller number of lo-
cal gates (a difference of 4 and 8 local operations, for
the length-10 and length-20 sequences, respectively), but
with the caveat that the error correction performance
suffers due to the asymmetry that the length-2 sequence
cancels errors to all orders while the length-5 only to
first order, and it is clearly better to repeatedly invoke
the more accurate sequence.

While the nonlocal 5θ0 rotation is not equivalent to
a cnot, two applications of this gate with appropriate
single-qubit operations can generate a cnot gate,

cnot =A1 exp

[
−iψ

2
σXI

]
U (k) exp

[
−iφ

2
σXI

]
× U (k) exp

[
−iψ

2
σXI

]
A2,

(10)

where k = 5, 10, or 20 and the local gates are given by

A1 = exp
[
−iπ(σX−σY )

2
√
2

]
⊗ exp

[
−i5π(σX+σY −σZ)

3
√
3

]
, A2 =

σX ⊗ exp
[−iπσY

4

]
, ψ = 2 arctan

[ √
−57+16

√
13

4−
√
13+2
√
−7+2

√
13

]
,

and φ = −2 arccos

[
− 1

2
√
−14+4

√
13

]
.

As a simple example, we consider qubits with
an XYZ coupling perturbed by random lo-
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FIG. 1. (Color online.) Infidelity vs noise strength for un-
corrected (solid) and corrected (dashed) CNOT gates for
Heisenberg-coupled spins in a random magnetic field.

cal terms, H = α (σZZ + ∆XσXX + ∆Y σY Y ) +∑
j={X,Y,Z} (Bj,1σjI +Bj,2σIj). This model encom-

passes both Ising and isotropic Heisenberg couplings,
both of which are realized in a broad variety of physical
settings. For instance, one concrete realization would
be electron spins in GaAs lateral quantum dots cou-
pled via Heisenberg exchange in the presence of noisy
magnetic fields due to nuclear spin fluctuations and
motion of the spin in an applied magnetic field gradient
[29]. Figure 1 shows the average infidelity, defined as
in Ref. [30], of the uncorrected cnot formed in the
standard way via two

√
swap gates along with local

operations [31]. The infidelity is averaged over the noise
by independently sampling the six random variables
over a normal distribution of standard deviation σ,
with the average being taken over 2000 samples for
each value of σ. The average infidelity of the corrected
sequence of Eq. (10) with k = 20 is also plotted, showing
impressive reductions in the error with relatively low
overhead. The sequence has 40 coupling pulses for a
total interaction time of 5θ0/α, only about three times
longer than the total naive interaction time of π/2α. In
the supplemental material, we present one more example
of gate fidelity improvement by applying our length-5
sequence, Eq. (10) with k = 5, to the cross resonance
gate between transmon qubits [22].

Returning to our program, we still have to deal
with δZZ . BB1 [12, 32]is a well-known remedy for such
errors, but it cannot be applied as the last step here
because, after constructing a cnot with U (k) (10), δZZ
is no longer just the coefficient of the ZZ error channel,
but appears in several error channels. Thus one must
remove the δZZ term in U (k) before it gets mixed into
other channels. Furthermore, BB1 cannot be applied
to U (k) because BB1 requires application of nonlocal π
rotations whose error is proportional to the error in the
nonlocal 5θ0 rotation, and this is not possible since θ0 is
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not a rational multiple of π.
Nonetheless, the δZZ error in U (k) can be compensated

using a new composite pulse sequence that is similar in
principle to BB1, where we perform the same nonlocal
rotation repeatedly about different axes that are tilted
from σZZ toward σZX by means of inserting single-qubit
rotations around σIY . We found numerically that at
least five different nonlocal axes are needed to cancel
δZZ to first order. The sequence has the form (for k = 5,
10, or 20)

U (6k) =

 1∏
j=4

exp

[
i
ψj
2
σIY

] [
U (k)

]nj

exp

[
−iψj

2
σIY

]U (k),

(11)
where the product is in descending order to reflect the
time-ordering of the operators, 1+

∑
nj = 6, and the val-

ues of the parameters depend on what desired operation
we are targeting and are obtained from a numerical min-
imization of an objective function containing the magni-
tude of the first order error terms of U (6k) as well as the
distance between the local invariants [33] of U (6k) and
those of the target operation. When targeting a cnot

equivalent, we obtain a solution U (6k)
cnot with an intrin-

sic infidelity (i.e., in the absence of noise) of ∼ 10−12

given by n1 = n2 = n3 = 1, n4 = 2, ψ1 ≈ 1.13527,
ψ2 ≈ −0.40553, ψ3 ≈ −1.84186, and ψ4 ≈ 0.19175. The
local operations that transform that solution into cnot
are given by

cnot = A1 exp

[
−iφ1

2
σIY

]
U (6k)
cnot exp

[
−iφ2

2
σIY

]
A2,

(12)
where A1 and A2 are the same single-qubit operations
as in Eq. (10), φ1 ≈ −1.60782, and φ2 ≈ 0.23403 (see
Supplemental Material).

Alternatively, rather than numerically targeting
a cnot, one can search for parameters such that
U (6k) instead yields a corrected rotation equivalent to
(5θ0/k)ZZ . In that way the output of the sequence
would be a leading-order corrected version of the
basic two-qubit input rotation and thus, in principle,
one could correct errors to arbitrarily higher order
by nesting the above sequence within itself. Taking
n1 = n3 = n4 = 1 and n2 = 2 in Eq. (11), we do
find such numerical solutions with intrinsic infidelities
ranging from 10−12 to 10−14. For k = {5, 10, 20}, respec-
tively, we find ψ1 ≈ {−0.18359,−0.10304,−0.05223},
ψ2 ≈ {−3.06178,−3.12993,−3.13844}, ψ3 ≈
{−2.01932,−2.58384,−2.86285}, and ψ4 ≈
{1.75080, 0.84439, 0.41865}. The necessary local
operations to be applied before nesting are given by

exp

[
−i5θ0/k

2
σZZ

]
= σmk

XI exp

[
−iβk

2
σIY

]
× U (6k)

5θ0/k
σmk

XI exp
[
−iγk

2
σIY

]
, (13)
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FIG. 2. (Color online.) Infidelity vs noise strength for uncor-
rected (solid) and corrected cnot gates to first (dashed) and
second (dot-dashed) order, using an Ising Hamiltonian with
general SU(4) errors.

where m5 = m10 = 1, m20 = 0, β5 ≈ 3.11104,
γ5 ≈ −2.11735, β10 ≈ 2.29085, γ10 ≈ −1.85051, β20 ≈
−1.21618, and γ20 ≈ 1.43078 (see Supplemental Mate-
rial).

We show the efficacy of the full composite pulse se-
quence by again applying it to a Hamiltonian with an
XYZ coupling, but this time with random fluctuations
on every one of the 15 SU(4) generators, H = ασZZ +∑
δijσij . (In the context of our prior example of ex-

change coupled spins in semiconductor dots, some of the
undesired nonlocal terms could, for example, come from
a Dzyaloshinskii-Moriya interaction [34, 35].) Using the
length-120 sequence (Eq. (12) with k = 20), we form
a cnot that is dynamically corrected against this com-
pletely general error to first order. The infidelities are
shown for comparison in Fig. 2. We also show the infi-
delity for a second order corrected cnot gate, generated
by nesting the sequence from Eq. (13) into Eq. (12).
Again, there are 15 stochastic noise variables, but for
the purposes of plotting infidelity we have averaged each
one independently over the same normal distribution of
standard deviation σ. In practice, the rather long full
composite sequence would only be needed in a worst-case
scenario where appreciable systematic error is present in
all channels. However, qubits in isotopically enriched sili-
con (using either gate-defined quantum dots [36] or phos-
phorus donors [37]) present long enough coherence times
compared to qubit operation times to feasibly implement
a sequence of this length.

Finally, though we have assumed ideal single-qubit
gates throughout (as in Ref. [38]), we now discuss the ef-
fect imperfect single-qubit gates would have on the above
composite sequences. We characterize the effect by as-
signing to each local gate a random systematic perturba-
tion of the form exp [−i

∑
∆iσi] ⊗ exp [−i

∑
∆jσj ] and

numerically averaging over noise realizations. Unsurpris-



5

ingly, we find that the average infidelity due to imper-
fect single-qubit gates increases with the sequence length,
from three times the average single-qubit infidelity for the
length-2 sequence up to 80 times the local gate infidelity
for the length-120 sequence, which has 121 local gates
(see Supplemental Material for a detailed discussion on
the effect of imperfect single-qubit gates with both sys-
tematic and random errors). Thus, we expect the various
sequences to be useful when the single-qubit gate fideli-
ties are at least an order of magnitude greater than the
two-qubit gate fidelities. However, even in cases where
that condition does not hold, the very existence of these
sequences reduces the task of raising two-qubit gate fi-
delity to the considerably simpler task of raising single-
qubit gate fidelity.

In summary, we have introduced a family of compos-
ite pulse sequences capable of correcting any systematic
logical error that could appear when generating an entan-
gling gate from any Hamiltonian. We have shown how
to use these sequences to generate cnot gates that are
error-free to arbitrary order. No knowledge of the un-
derlying noise mechanisms is assumed, other than that
they are quasistatic on the time scale of the operations.
This sort of black-box approach is generally forbidden
[11], but we have explicitly shown here that it is permit-
ted in the case of access to ideal single-qubit operations.
The generality of the composite pulse sequences we have
presented above makes them a powerful tool for robust
generation of entanglement and quantum computing in
the presence of systematic error.

This work was supported by the National Science
Foundation under Grant No. 1620740.
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