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Homotopy theory and first-principles-based effective Hamiltonian simulations are combined to
investigate the stability of topological defects in proper ferroelectric crystals. We show that, despite
a nearly trivial topology of the order parameter space, these materials can exhibit stable topological
point defects in their tetragonal polar phase and stable topological line defects in their orthorhombic
polar phase. Stability of such defects originate from a novel mechanism of topological protection
related to finite-temperature fluctuations of local dipoles.
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Topologically non-trivial dipolar configurations are
commonly expected to appear in ferroelectric nanostruc-
tures (such as dots, films, nanocomposites, rings or su-
perlattices, see Refs. [1–12] and references therein), as a
result of the inherent depolarizing fields arising from sur-
face or interface effects. In the absence of depolarizaing
fields, the existence of topological defects can be also ex-
pected in structurally disordered materials (e.g., relaxor
ferroelectrics [13]) due to strong, randomly distributed,
local fields stemming, e.g., from alloying [14]. In both
of these cases, topological defects constitute an intrin-
sic feature of the ground state of the system and corre-
spond to energetically favorable dipolar configurations.
On the other hand, topological defects have no reason to
appear in systems free of depolarizing and/or local fields,
unless granted protection by some alternative, “topologi-
cal”, stabilization mechanism. Theoretically, such mech-
anisms are conventionally related to non-trivial topology
of the order parameter (OP) space [15] that can come in
play whenever the symmetry of the system is continuous.
In such cases, continuous symmetry allows the order pa-
rameter to swirl and topologically protects intriguing lo-
calized patterns like vortices, circulation lines, skyrmions
and monopoles (hedgehogs and anti-hedgehogs) even at
low temperatures where perfect monodomain order is ex-
pected [15]. However, ideal ferroelectric crystals exhibit
neither local nor depolarizing fields, and the underlying
symmetry in these materials is at best approximately con-
tinuous, especially in improper ferroelectric compounds
in the vicinity of the critical temperature or in some
solid solutions near their morphotropic phase boundary.
Therefore, to the best of our knowledge, it is presently
unclear if bulks of proper ferroelectrics can host stable
topological defects in their macroscopic polar phases. If
that is the case, it will be also crucial to determine the
reason behind the hypothetical existence of stable topo-
logical defects in polar phases of proper ferroelectrics.

In this Letter, we use bulk BaTiO3, as a model ex-
ample, to investigate whether this material can exhibit
topological defects. For this, we first resort to the analy-
sis of atomistic effective Hamiltonian simulations via the
homotopy theory [16]. Specifically, instead of consider-

ing topology of the order parameter (OP) space [15], we
investigate the topology of internal states manifolds [17]
(ISM), which leads us to predict that the non-trivial ISM
topology in all ferroelectric phases of BaTiO3 results in
the stabilization of topological defects of different dimen-
sionality. Large-scale effective Hamiltonian Monte Carlo
simulations are then conducted for bulk BaTiO3 to con-
firm such novel predictions. Technically, we find that sta-
ble defects correspond to point-like defects with hedgehog
or anti-hedgehog cores in the tetragonal polar phase of
BaTiO3 bulk and to linear defects formed by vortex or
anti-vortex cores in its orthorhombic polar phase. The
results of our work hence reveal a novel mechanism of
topological protection, namely the stabilization by finite-
temperature fluctuations of local dipoles, that can be re-
alized in proper ferroelectrics. They also provide a the-
oretical ground for further investigations of topological
defects in systems with finite underlying symmetries.

Barium titanate (BaTiO3) bulk is a prototypical
proper ferroelectric. Upon cooling, it undergoes a series
of structural phase transitions [18] with a ferroelectric
Curie temperature corresponding to the transition from
paraelectric (P) to tetragonal (T ) phase. The P − T
transition is then followed by tetragonal to orthorhom-
bic (T −O) phase change, with a subsequent symmetry-
breaking resulting in a rhombohedral (R) ground-state.
Notably, at each transition, global symmetries of both
high- and low-temperature phases are described by two
different point symmetry groups, which we will denote
by G and H, respectively. In this case, it is easy to
see that the corresponding OP spaces, defined as quo-
tient groups G/H [15, 19], comprise finite number of el-
ements and are thus endowed with point set topology
[16]. For instance, at the P − T transition, the order
parameter space is topologically equivalent to a set of six
disconnected points: G/H comprises six elements related
to symmetry-equivalent orientations of macroscopic po-
larization in tetragonal T phase ([100], [1̄00], [010] etc.
pseudo-cubic (p.c.) directions). Therefore, at each phase
transition, the topology of the order parameter space is
equivalent to that of a finite set of points. For finite point
sets, all the homotopy groups πn apart from the zeroth-
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homotopy set π0 [15, 19] are trivial and hence homotopy
based classification [15] does not reveal existence of nei-
ther point nor linear defects for all ferroelectric phases
of BaTiO3 bulk. Moreover, this conclusion should apply
not only to BaTiO3 bulks, but also to any proper ferro-
electric bulk, at the exception of some solid solutions in
their morphotropic phase boundary for which the sym-
metry might be approximately continuous. For example,
it should be valid for Ti-rich Pb(Zr,Ti)O3 alloys [20]. On
the other hand, recent experiments have revealed that in
the Ti-rich Pb(Zr0.2Ti0.8)O3 system, local dipoles can
nevertheless form continuous vortex-like structures [11]
similar to linear topological defects in magnetic systems.
The source of this apparent discrepancy may lie in the
definition of the OP space that does not allow to cap-
ture continuous rotation of local dipoles away from the
symmetry-allowed lattice directions. Therefore, in order
to classify topological defects in bulks made of proper fer-
roelectrics, one may have to explore not the structure of
quotient groups G/H, but rather the topology of full in-
ternal states manifold [17] that would comprise all values
of local dipoles accessible within a specific ferroelectric
phase.

Here, we explore such possibility and propose to define
such internal states manifolds M via a single variable
probability distribution function ρ(uuu) given by

ρ(uuu) =
1

Z

∫
dη̂

∫
d3uuui1 ..d

3uuuiN−1
e−βHeff ({uuui},η̂), (1)

where uuui denote local dipole moments (local modes) in
each unit cell i = 1..N of a ferroelectric crystal, β
corresponds to the inverse temperature in energy units
β = 1/kT , and Z is the thermodynamic partition func-
tion. The Heff ({uuui}, η̂) function stands for any effective
Hamiltonian describing energy landscape of unstable fer-
roelectric modes [21, 22], and integration in Eq. (1) is
carried over all values of strain variables η̂ (both homo-
geneous and inhomogeneous), and all except one local
mode degrees of freedom. As can be readily seen from
its definition, ρ(uuu) gives a probability of any local dipole
within a crystal to take a certain value uuu, and can there-
fore be used to define M as a set of uuu values for which
ρ(uuu) > ε, with ε → 0 being an infinitesimally small pos-
itive constant introduced to cut-off internal states with
infinitely small occurrence probability. We expect this
definition to coincide with the notion of internal states
manifold described in Ref. [17], and moreover to practi-
cally allow direct evaluation of M using standard com-
putational schemes, such as Monte Carlo or molecular
dynamics simulations. Here, we resort to Monte Carlo
simulations [23] and the first-principles based effective
Hamiltonian model of Ref. [24] to obtain the topology
of the manifolds M for all distinct structural phases of
BaTiO3. The numerical estimate of ρ(uuu) is obtained us-
ing 12×12×12 (8,640 atoms) periodic supercells and 106

Monte Carlo sweeps. The introduction of the finite cutoff

ε is necessary in case of numerical evaluation of the inte-
gral (1) that is subject to a finite errors in ρ values, as
well as artifacts related to finite supercell sizes. However,
we expect that sufficiently increasing the supercell size
and the accuracy of numerical integration should allow
for values of ε at least as low as the numerical precision
of computer arithmetic.

FIG. 1: Regions of finite probability ρ(uuu) > ε as obtained
from Monte Carlo simulations (second column), and the in-
ternal states manifolds M (third column) for paraelectric
(P), tetragonal (T ), orthorhombic (O) and rhombohedral (R)
phases. The third column also presents the Euler character-
istic χ of M, related nontrivial homotopy groups and the
derived stable topological defects. Each symmetry breaking
phase transition leads to a rupture of the manifold M, chang-
ing its topology as signified by the change of the Euler char-
acteristic χ.

The results of the performed simulations are presented
in Fig. 1. It shows three-dimensional plots of ρ(uuu) > ε
regions obtained from Monte Carlo simulations (with
ε ∼ 10−4 (e·a0)−3, where e and a0 denote electron charge
and Bohr radius respectively) along with the correspond-
ing reconstructed internal space manifolds M. The ne-
cessity of reconstruction of M from the obtained Monte
Carlo data stems from the well-known inability of the
Metropolis algorithm to efficiently sample the full config-
uration space for symmetry-broken phases. Indeed, be-
low transition temperature, the random walk is usually
confined to the configuration space regions correspond-
ing to one single macroscopic order parameter orienta-
tion, while the M set has to include all possible local
dipole values. Therefore, for T , O, and R phases, the
probability distribution ρ(uuu) obtained from Monte Carlo
simulations should be properly symmetrized so as to ac-



3

count for all possible local dipole states. At this point, it
is important to note that all the relevant anisotropic en-
ergy contributions present in the used Heff model man-
ifest themselves in the symmetry of probability distri-
bution function ρ(uuu) (left column of Fig.(1)) and as a
result in the geometry of internal states manifolds (note
cuboid shapes in the right column of Fig.(1)). On the
other hand, thermal entropy, being sufficiently high in T
and O phases, allows local dipoles to significantly deviate
from orientations dictated by the anisotropy. As a result,
the local symmetry can differ from the macroscopic one,
since local dipoles can adopt orientations very different
from the direction of global polarization. This possible
discrepancy between local and global scales is not taken
into account in the traditional picture of topological de-
fects that relies only on the topology of the order param-
eter space. On the other hand, in the low-temperature
R phase, thermal fluctuations are restricted and the co-
inciding local and global symmetries render the internal
states and the order parameter manifolds topologically
equivalent. To see this, one can reconstruct the order
parameter space from the ρ(uuu) function by evaluating
polarization PPP =

∫
d3uuu uuuρ(uuu) and symmetrizing the re-

sulting single-point set using the cubic point group Oh
(paraelectric phase symmetry).

Looking at the results presented in Fig.(1), we see that
in the paraelectric phase, M corresponds to a volume
bounded by a cube with rounded edges centered at uuu = 0.
The global maxima of ρ are located on the lines cor-
responding to the rhombohedral polarization directions
(i.e., along p.c. 〈111〉), while the saddle points are lo-
cated at orientations corresponding to tetragonal (p.c.
〈001〉) and orthorhombic (p.c. 〈110〉) polarization orien-
tations. The global minimum is located at the center of
coordinate system. Moreover, the set M is simply con-
nected and homotopy equivalent to a three dimensional
ball. Therefore, the Euler characteristic χ of M is equal
to one, and all homotopy groups πn ofM are trivial [32].

Interestingly, the symmetry breaking occurring at the
P − T transition leads to a change of the topology of
M. Indeed, below the Curie temperature, the proba-
bility of observing local dipoles with small magnitudes
vanishes, causing a rupture of M at uuu = 0 (see third
column of Fig. 1). Hence, for the T phase, χ = 2 and
M is homotopy equivalent to a two dimensional sphere,
meaning that its second homotopy group π2 is nontriv-
ial (π2 = Z) [32]. At this point, it is worth noting the
difference between manifold M and the corresponding
order parameter space. Specifically, the structure of M
(see Fig. 1) suggests that local dipoles significantly devi-
ate from the average polarization value in the tetragonal
domains. As a matter of fact, in accordance with the
famous Comes-Guinier-Lambert model [26], the proba-
bility distribution ρ(uuu) at saddle points located on the
Cartesian axes ux, uy and uz is less than at the maxima
corresponding to the 〈111〉-equivalent directions. Hence

for the T phase of BaTiO3 the local dipole moments ac-
tually have the freedom to continuously change between
domains with different polarization orientation. In con-
trast, the order parameter space is discrete and describes
only the possible macroscopic polarization values. This
indicates that the suggested insufficiency of the order pa-
rameter space to characterize possible complex nanoscale
dipolar patterns holds in case of BaTiO3.

The T −O transition results in additional ruptures oc-
curring at uuu corresponding to macroscopic polarization
values in the T phase. The Euler characteristic of the
resulting manifold is negative and equals to χ = −4.
Moreover, as can be seen from Fig. 1, π1 is nontrivial
in the O phase, i.e. there are non equivalent classes of
closed loops [15] lying within M. Similarly to the P
and T phases, ρ has global maxima at the rhombohedral
directions and saddle points at orthorhombic directions.
Thus, as in the case of the T phase, the local dipoles
within a given orthorhombic domain actually have lower
probability to be oriented along the mean polarization
direction and effectively fluctuate between several possi-
ble rhombohedral ground state orientations. Finally, the
phase transition to the R ground state is marked by rup-
tures occurring at uuu equal to polarization values in the O
phase, making the M manifold a union of eight non-
intersecting simply-connected volumes. Each of these
volumes corresponds to one of the eight equivalent rhom-
bohedral polarization directions, and M can be practi-
cally described by the point set topology. Therefore, for
R phase, the topology ofM is actually equivalent to that
of the order parameter space, and is therefore character-
ized by non-trivial zeroth homotopy set π0 [19, 32].

Summarizing the obtained evolution of the internal
states manifold M of BaTiO3 with temperature, we
would like to stress several observations. Firstly, at each
phase transition, the topology of M changes, with M
being ruptured at points uuu corresponding to values of
macroscopic polarization in the higher symmetry phase.
Secondly, our results corroborate that the T and O
phases are stabilized by strong dipolar fluctuations, are
in line with but also widen the Comes-Guinier-Lambert
model [26] and results of recent molecular dynamics sim-
ulations [27]. Finally, the revealed fluctuation statis-
tics show that local dipoles have the freedom to con-
tinuously interpolate between symmetry equivalent fer-
roelectric domains, endowingM of T and O phases with
nontrivial topological structure.

The last conclusion requires some additional attention,
since it is directly related to stability of topological de-
fects. Indeed, takingM in place of order parameter space
as codomain in homotopy-based classification of topolog-
ical defects [15, 19], allows to reveal that the T and O
phases can, in fact, exhibit a variety of stable topological
defects! Specifically, non-trivial π2 of M in the T phase
suggests topological protection of point-like defects [19],
such as hedgehog (anti-hedgehog) cores. On the other



4

hand, in the O phase, M is characterized by the non-
trivial π1 yielding protection of linear defects [15], e.g.
circulation lines composed of two-dimensional vortex or
anti-vortex cores. Finally, in the R phase, non trivi-
ality of π0 should yield topological protection of two-
dimensional defects, such as domain walls [19], in ac-
cordance with discrete topology of the order parameter
space. Notably, while the stability of domains walls at
low temperatures (in the R phase of BaTiO3) has been
confirmed by first-principles simulations (e.g. see Ref.
[28] and references therein), we are not aware of any
prediction related to the occurrence of stable point- and
linear-defects in its T and O phases, respectively.

To check such predictions, we further performed large-
scale Monte Carlo simulations using L×L×L supercells,
with L typically varying between 32 and 58, annealed
from T = 500K down to T = 190K with a step of 10K (us-
ing again the effective Hamiltonian of Ref. [24]). At each
temperature, the system was relaxed during 105 Monte
Carlo sweeps, which was sufficient to always obtain a
macroscopic polar state. Upon reaching thermal equilib-
rium, the average densities of hedgehog/anti-hedgehog
pairs ρ∗ and vortex/anti-vortex pairs ρL were computed
for each considered temperature (at each T , both ρ∗ and
ρL were found to be dynamical, i.e. fluctuating in the
course of Monte-Carlo sweeps). Examples of such defects
obtained from our simulations for L = 32, are shown in
Fig. 2 (note that similar defects, but of larger size can
be also observed once bigger supercell sizes are used as
shown in Supp. Mat.), while Fig. 3(a,b) presents the
calculated temperature dependence of the equilibrium ρ∗
and ρL for L = 46. From Fig. 3(a,b) one can see that, for
265K< T < 365K (corresponding to the stability range
of the T phase within the employed effective Hamiltonian
scheme), ρ∗ is finite, decreasing as the temperature is re-
duced within T until vanishing at, and below, the T −O
transition (265K). Moreover, the calculated ρL is also fi-
nite but in the O phase (215K< T < 265K), significantly
decreasing as the temperature is reduced and eventually
vanishing when the R phase is reached. Therefore, the
mere existence of hedgehogs (anti-hedgehogs) in the T
phase and vortices (anti-vortices) in theO phase confirms
the prediction of their stability arising from the non-
trivial topologies of calculated ISM presented in Fig. 1.

Whereas the new mechanism of topological protection
considered in this study is different from the conventional
mechanism related to continuous symmetry of the Hamil-
tonian, the resulting topological defects share many sim-
ilar features in both cases. Particularly, the conventional
decomposition [15] of the energy cost of a defect into
the energy of its core (independent of the spatial ex-
tent of the defect) and the energy of the deformation
of the dipolar field caused by the defect (proportional
to the defect size) should hold for BaTiO3 in the same
way it is valid for continuous-symmetry Heisenberg and
XY models. Therefore, the physics of topological de-

(a) (b)

FIG. 2: (a) Dipolar configuration of a hedgehog/anti-
hedgehog pair in the T phase at 300K. Pink and blue unit
cells enclose a hedgehog and anti-hedgehog core, respectively.
(b) Configuration exhibiting two vortex/anti-vortex pairs in
the O phase at 250K. Yellow and blue polygons highlight unit
cell faces enclosing vortex/anti-vortex cores, respectively. In

both panels, vector ~P shows the pseudo-cubic crystallographic
orientation of polarization, while colored arrows represent lo-
cal dipoles (uuu), with blue to red color corresponding to an

increasing angle between uuu and ~P .

FIG. 3: Calculated temperature dependence of the equilib-
rium densities of (a) hedgehogs/anti-hedgehog pairs in the
polar tetragonal phase and (b) vortex/anti-vortex pairs in the
polar orthorhombic phase. Error bars correspond to standard
deviation and whenever are not visible become smaller than
the size of the data points.

fects seen in continuous-symmetry models [15] can be
also observed in proper ferroelectrics. For instance, in
the T and O phases we clearly observe the bonding of
hedgehogs/anit-hedgehogs and vortices/anti-vortices re-
spectively (see Fig.(2) as well as panel (a) of Fig.(1)
of Supplemental material), due to the confinement-like
growing of the energy with increasing distance between
defects of opposite topological charges.

In summary, in this study we have explored non-trivial
topological defects in ferroelectric phases of BaTiO3

bulks. Our results show that, despite the underlying fi-
nite symmetry, the tetragonal and orthorhombic polar
phases of this compound can exhibit stable point de-
fects, such as hedgehog or anti-hedgehog cores in the
T state and line defects composed of vortex or anti-
vortex cores in the O phase. Moreover, we have demon-
strated that the topological protection of such defects is
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related to non-trivial topology of the internal states man-
ifolds rather than that of the order parameter space and
hence stems from finite-temperature fluctuations. We
thus hope that the present study deepens the current
knowledge of the fascinating and active research field de-
voted to topological defects.
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