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Moiré patterns are common in van der Waals heterostructures and can be used to apply periodic
potentials to elementary excitations. We show that the optical absorption spectrum of transition
metal dichalcogenide bilayers is profoundly altered by long period moiré patterns that introduce
twist-angle dependent satellite excitonic peaks. Topological exciton bands with non-zero Chern
numbers that support chiral excitonic edge states can be engineered by combining three ingredients:
i) the valley Berry phase induced by electron-hole exchange interactions, ii) the moiré potential, and
iii) the valley Zeeman field.
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Stacking two-dimensional (2D) materials into van der
Waals heterostructures opens up new strategies for ma-
terials property engineering. One increasingly important
example is the possibility of using the relative orienta-
tion (twist) angle between two 2D crystals to tune elec-
tronic properties. For small twist angles and lattice-
constant mismatches, heterostructures exhibit long pe-
riod moiré patterns that can yield dramatic changes.
Moiré pattern formed in graphene-based heterostructures
has been extensively studied, and many interesting phe-
nomena have been observed, for example gap opening
at graphene’s Dirac point [1, 2], generation of secondary
Dirac points[3, 4] and Hofstadter-butterfly spectra in a
strong magnetic field[1, 5, 6].

In this Letter, we study the influence of moiré pat-
terns on collective excitations, focusing on the important
case of excitons in the transition metal dichalcogenide
(TMD) 2D semiconductors [7, 8] like MoS2 and WS2.
Exciton features dominate the optical response of these
materials because electron-hole pairs are strongly bound
by the Coulomb interaction [9–12]. An exciton inherits
a pseudospin-1/2 valley degree of freedom from its con-
stituent electron and hole, and the exciton valley pseu-
dospin can be optically addressed [13–16], providing ac-
cess to the valley Hall effect [17] and the valley selective
optical Stark effect [18, 19].

As in the case of graphene/hexagonal boron nitride and
graphene/graphene, a moiré pattern can be established
in TMD bilayers by using two different materials with a
small lattice mismatch, by applying a small twist, or by
combining both effects. TMD heterostructures have been
realized [20–22] experimentally and can host interesting
effects, for example the observation of valley polarized
interlayer excitons with long lifetimes [23], the theoreti-
cal prediction of multiply degenerate interlayer excitons
[24], and the possibility of achieving spatially indirect ex-
citon condensation [25, 26]. Our focus here is instead on
the intralayer excitons that are more strongly coupled to
light. As we explain below, the moiré pattern produces
a periodic potential, mixing momentum states separated

by moiré reciprocal lattice vectors and producing satellite
optical absorption peaks that are revealing. The exciton
energy-momentum dispersion can be measured by track-
ing the dependence of satellite peak energies on twist
angle.

The valley pseudospin of an exciton is intrinsically
coupled to its center-of-mass motion by the electron-
hole exchange interaction[27–30]. This effective spin-
orbit coupling endows the exciton with a 2π momentum-
space Berry phase[31]. We show that topological exciton
bands characterized by quantized Chern numbers can be
achieved by exploiting this momentum-space Berry phase
combined with a periodic potential due to the moiré pat-
tern and time-reversal symmetry breaking by a Zeeman
field. All three ingredients are readily available in TMD
bilayers. The bulk topological bands lead to chiral edge
states, which can support unidirectional transport of ex-
citons optically generated on the edge. Our study there-
fore suggests a practical new route to engineer topological
collective excitations which are now actively sought[32–
37] in several different contexts.

Exciton Potential Energy— For definiteness we consider
the common chalcogen TMD bilayer MoX2/WX2 with
a small twist angle θ and an in-plane displacement d.
TMDs with a common chalcogen (X) atom have small
lattice mismatches (∼ 0.1%), which we neglect to sim-
plify calculations. Because of the van der Waals hetero-
junction character and relative band offsets, both con-
duction and valence bands of MoX2 and WX2 are weakly
coupled across the heterojunction. The heterojunctions
have two distinct stacking orders AA and AB, which are
illustrated in Figs. 1(a) and 1(d). Both configurations
have been experimentally realized [23, 38].

We start by analyzing the bilayer electronic structure
at zero twist angle. Fully-relativistic density-functional-
theory ab initio calculation is performed for crystalline
MoS2/WS2 (θ = 0◦) as a function of relative displace-
ment d. We used the local density approximation with
optimized norm-conserving pseudopotentials [39, 40] as
implemented in Quantum Espresso [41], and determined
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FIG. 1. (color online). (a) Illustration of AA stacking with a small twist angle θ and an in-plane displacement d. (b) Variation
of MoS2 band gap as a function of d in AA stacked MoS2/WS2 bilayer with zero twist angle. (c) Variation of MoS2 band
gap as a function of position in AA stacked twisted MoS2/WS2. (d)-(f) Corresponding plots for AB stacking. (g) First-shell
reciprocal lattice vectors Gj of a monolayer TMD triangular lattice and the corresponding Brillouin zone (red hexagon). (h)
Moiré reciprocal lattice vectors and corresponding Brillouin zone

the orbital character of electronic bands using Wannier90
[42]. More details of the calculation are presented in the
Supplemental Material [43]. Our primary interest here is
intra-layer physics. Figs. 1(b) and 1(e) illustrate the d
dependence of the energy gap at the K± points between
states concentrated in the MoS2 layer. The variation of
the gap is a periodic function of d with the 2D lattice pe-
riodicity, and is adequately approximated by the lowest
harmonic expansion:

∆(d) ≡ Eg(d)− 〈Eg〉 ≈
6∑
j=1

Vj exp(iGj · d), (1)

where Eg is the intralayer band gap of MoS2, 〈Eg〉 is its
average over d, and Gj is a one of the first-shell recip-
rocal lattice vectors illustrated in Fig. 1(g). Three-fold
rotational symmetry of the lattice leads to the constraint:

V1 = V3 = V5, V2 = V4 = V6. (2)

Because ∆ is real, we also have that V1 = V ∗4 . It follows
that all six Vj are fixed by V1 = V exp(iψ). For MoS2

on WS2 we find that (V, ψ) = (2.3meV, 30.8◦) for AA
stacking and (1.4meV, 98.6◦) for AB stacking. Because
the band offset between the two layers can be modified
by external electric fields, we expect that the values of
these parameters can be tuned using gate voltages.

Rotation by angle θ transforms lattice vector L to L′ =
R(θ)L, where R(θ) is the rotation matrix. For small
twist angles, the relative displacement[44] between two

layers near position L′ is therefore,

d(L′) = T̂L′ = T̂ (L′ −L) ≈ T̂ (θẑ ×L′), (3)

where the operator T̂ reduces a vector to the Wigner-
Seitz cell of the triangular lattice labeled by L. In the
limit of small θ, the displacement varies smoothly with
position. Because the size of an exciton in TMDs (∼
1nm) is larger than the lattice constant scale, validating
a k · p description, but much smaller than moiré periods,
the influence of the displacement on exciton energy is
local [45, 46]. We find that the variation in the band
gap dominates over that of the binding energy[43]. For
simplicity, we assume that the variation of exciton energy
will follow that of local band gap:

∆(r) ≈ ∆(d(r)) ≈
6∑
j=1

Vj exp(iGj · d(r))

≈
6∑
j=1

Vj exp(iGj · (θẑ × r)) =

6∑
j=1

Vj exp(ibj · r).

(4)

Here ∆(r) acts as an exciton potential energy, and bj =
θGj× ẑ defines the reciprocal lattice vectors of the moiré
pattern. The band gap varies periodically in space due
to the moiré pattern, as illustrated in Figs. 1(c) and 1(f).
The moiré periodicity aM is controlled by the twist an-
gle: aM ≈ a0/θ, where a0 is the lattice constant of a
monolayer TMD.
Optical response.— We study the A exciton, the lowest-
energy bright exciton, in monolayer MoS2. Its low-energy
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FIG. 2. (color online). (a) Exciton moiré bands along paths
connecting high symmetry points in the MBZ. The twist angle
θ used for this calculation is 1◦. The sizes of the dots at the
γ point correspond to the weight of state |K(0)

± 〉. The color of
the dots encodes the main character of the states, with blue,
red, green and yellow corresponding to character (1), (2), (3)
and (4). See text. (b) Optical conductivity at several twist
angles θ. Curves for different θ are shifted vertically for clar-
ity and the dashed curves track the peak evolution. The two
mini-peaks in (4) are amplified ten times. The broadening fac-
tor η is taken to be 0.5meV. The exciton potential parameters
of AA stacked MoS2/WS2 were used in these calculations.

effective Hamiltonian [27–30] is:

H0 = (~Ω0 +
~2Q2

2M
)τ0 + J |Q|τ0

+J |Q|
[

cos(2φQ)τx + sin(2φQ)τy
]
,

(5)

where Q is exciton momentum, ~Ω0 is its Q = 0 energy,
~2Q2/(2M) is its center-of-mass kinetic energy, and τ0
and τx,y are respectively identity matrix and Pauli ma-
trices in valley space. In Eq. (5), φQ is the orientation
angle of the 2D vector Q, J |Q|τ0 accounts for intravalley
electron-hole exchange interactions, and the τx,y terms
account for their intervalley counterparts[47]. It follows
that the A exciton has two energy modes,

E±(Q) = ~Ω0 +
~2Q2

2M
+ J |Q| ± J |Q|. (6)

Note that E+ has linear dispersion at small |Q|, while
the lower mode E− is quadratic. From the ab initio

GW Bethe-Salpeter calculation of Ref. [48] we obtain
M = 1.3m0 and J = 0.4eV · Å, where m0 is the free
electron mass. Since the gap variation is guaranteed by
time reversal symmetry to be identical for K+ and K−
valleys, the exciton effective Hamiltonian of twisted bi-
layers is H = H0 + ∆(r)τ0.

We numerically diagonalize the Hamiltonian matrix
using a plane-wave expansion; exciton momentum re-
duced to the moiré Brillouin zone (MBZ) is a good quan-
tum number. Fig. 2(a) illustrates the MoS2 A exciton
moiré bands for a 1◦ twist relative to WS2. Smaller
twist angles imply smaller MBZ dimensions and more
moiré bands in a given energy window. For twist angles
θ > 0.5◦, the wavelength (640nm) of light that excites A
excitons greatly exceeds the moiré periodicity (<36nm).
It follows that only excitons close to the MBZ center γ
are optically active. The real part of the optical conduc-
tivity can be expressed as follows,

Reσ(ω) =
1

ωA
∑
n

∣∣〈χn|jx|G〉∣∣2Γ1(ω − ωn)

≈
∣∣〈K(0)

+ |jx|G〉
∣∣2

ωA
∑
n

∣∣ ∑
α=±
〈χn|K(0)

α 〉
∣∣2Γ1(ω − ωn)

≈1

2
Reσ(0)(Ω0)

∑
n

∣∣ ∑
α=±
〈χn|K(0)

α 〉
∣∣2Γ2(ω − ωn),

(7)

where A is the system area, Γm(ω − ωn) = ηm/
[
~2(ω −

ωn)2 + η2
]

and η is a broadening parameter. In Eq. (7)
jx is the current operator, |G〉 is the neutral semiconduc-
tor ground state, |χn〉 and ~ωn are the eigenstates and
eigenvalues of the exciton moiré Hamiltonian at the γ

point, |K(0)
α 〉 is the valley Kα exciton eigenstate at zero

twist angle, and Reσ(0)(Ω0) is the A exciton optical con-
ductivity peak also at zero twist angle. The assumption

underlying Eq. (7) is that only the |K(0)
± 〉 component in

|χn〉 contributes to the optical response. The final form
for σ(ω) emphasizes that the exciton moiré potential has
the effect of redistributing the A-exciton peak over a se-
ries of closely spaced sub-peaks.

Theoretical optical conductivities for a series of twist
angles are illustrated in Fig. 2(b). Peaks labelled (1-4)
(see caption) correspond respectively to bare excitons at
zero momentum, E− excitons at momentum bi, E− exci-
tons at momentum

√
3bi× ẑ, and E+ excitons at momen-

tum bi. Without the moiré pattern there would only be
one peak centered around frequency Ω0; umklapp scat-
tering off the moiré potentials unveils the formerly dark
finite-momentum excitonic states. Both (2) and (4) give
rise to two mini-peaks with a small energy splitting. As
the twist angle decreases, |bi| is reduced and the satel-
lite peaks shift to lower energy and become stronger; for
θ ∼ 0.6◦ satellite peaks (2) and (3) have strength that
is comparable to that of peak (1). Although peak (4) is
weak, it decays more slowly compared to peak (3) when
θ increases. The energy difference between peak (2) and
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FIG. 3. (color online). (a) Topological exciton bands with
quantized Chern numbers C for twist angle θ = 1◦. The gray
bar identifies the gap between the first and second exciton
moiré band. (b) Stripe geometry quasi-1D bands for the same
twist angle, an extended edge along the x direction, and finite
width in the y direction. The red and green lines show the
dispersions of chiral exciton states that are localized on op-
posite edges of the stripe. In (a) and (b), hz is 1.5meV, and
(V , ψ) take the parameter values of AB stacked MoS2/WS2.

(4) provides a direct measurement of the electron-hole
exchange interaction strength.
Topological excitons.—The intervalley exchange interac-
tion acts as an in-plane valley-space pseudo-magnetic
field which rotates by 4π when the momentum encloses
its origin once. This non-trivial winding number can be
used to engineer topological exciton bands when com-
bined with the moiré superlattice potential , which pro-
vides a finite Brillouin zone and an energy gap above the
lowest exciton band at every Q point in the MBZ except
the γ point. An external Zeeman term hzτz can split the
degeneracy at γ. A Zeeman term of this form has been
experimentally realized in monolayer TMDs by applying
a magnetic field [49–51] and by using a valley selective
optical Stark effect [18, 19]. The topology of the exciton
bands is characterized by Berry curvature F and Chern
number C, just as in the electronic case:

Fn(Q) = ẑ · ∇Q ×
[
i〈χn(Q)|∇Q|χn(Q)〉

]
,

Cn =

∫
MBZ

d2Q

2π
Fn(Q),

(8)

where |χn(Q)〉 represents the nth eigenstate of Hamilto-
nian H at momentum Q. Fig. 3(a) presents our results
for the topological properties of moiré exciton bands in
AB stacked MoS2/WS2. We find that the first exciton
band can possess a non-zero Chern number, and that it
is isolated from other bands by a global energy gap. The
corresponding Berry curvature F has hot spots around
γ, κ, and κ′ points in the MBZ. F around γ is simply
understood in terms of the valley Berry phase induced
by the exchange interaction, and its sign is determined
by that of hz. The peak in F around the κ and κ′ point
is related to gap opening due to moiré pattern, and can
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FIG. 4. (color online). Spatially resolved optical conductivity
on the same stripe geometry as studied in Fig. 3(b). The
optical conductivity is averaged over x. (a) Response from
bulk states. The energy splitting between the two peaks is
due to the Zeeman energy. An energy broadening factor of
1meV is used. (b) Response from both bulk and edge states.
There is an enhancement of the optical response around the
edge due to edge states. The arrows indicate the energy level
of bulk states (gray arrow) and edge state (red arrow) in the
absence of energy broadening, and correspond to the three
arrows shown in Fig. 3(b).

vary as a function of ψ, the phase of V1. We find that
the Chern number is finite in a large parameter space of
(ψ, θ)[43]. Therefor we expect that topological exciton
bands appear routinely in TMD bilayers.

Chiral excitonic edge states expected for topological
bands is confirmed by studying the energy spectrum
of a finite-width stripe [43], as illustrated in Fig. 3(b).
These states can support unidirectional excitonic trans-
port channel. We have computed optical response of the
edge states[43]. The spatially resolved optical conductiv-
ity is shown in Fig. 4. Based on numerical results, we find
that the maximum local optical conductivity due to one
edge state is about 0.19Reσ(0)(Ω0), which is comparable
in magnitude to that of the bulk states. As illustrated
in Fig. 4(b), edge states give rise to enhanced response
around the edge, and therefore can be detected by spa-
tially resolved absorption spectroscopy.

In summary, intralayer excitons in a twisted TMD bi-
layer exhibit rich phenomena enabled by the moiré pat-
tern, including satellite excitonic peaks in optical ab-
sorption peaks that are tunable by varying twist an-
gle. The moiré superlattice potential, the exciton Zee-
man field, and the electron-hole exchange induced valley
Berry phase can in combination give rise to topological
exciton bands. Our analysis points to a practical strategy
to realize topological excitons.
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