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The amplitude (“Higgs”) mode is a ubiquitous collective excitation related to spontaneous break-
ing of a continuous symmetry. We combine quantum Monte Carlo (QMC) simulations with stochas-
tic analytic continuation to investigate the dynamics of the amplitude mode in a three-dimensional
dimerized quantum spin system. We characterize this mode by calculating the spin and dimer spec-
tral functions on both sides of the quantum critical point, finding that both the energies and the
intrinsic widths of the excitations satisfy field-theoretical scaling predictions. While the line width
of the spin response is close to that observed in neutron scattering experiments on TlCuCl3, the
dimer response is significantly broader. Our results demonstrate that highly non-trivial dynamical
properties are accessible by modern QMC and analytic continuation methods.

The spontaneous breaking of a continuous symmetry
allows collective excitations of the direction and ampli-
tude of the order parameter; for O(N) symmetry, there
are N−1 massless directional (Goldstone) modes and one
massive amplitude mode [1–4]. In loose analogy with the
Standard Model, the latter is often called a Higgs mode.
A strongly damped amplitude mode has been reported in
two dimensions (2D) at the Mott transition of ultracold
bosons [5] and at the disorder-driven superconductor–
insulator transition [6, 7]. In 3D, the amplitude mode
is expected on theoretical grounds to be more robust,
and indeed the cleanest observation to date of a “Higgs
boson” in condensed matter is at the pressure-induced
magnetic quantum phase transition (QPT) in the dimer-
ized quantum antiferromagnet TlCuCl3 [8–10].

Below the upper critical number of space-time dimen-
sions, which for an O(N) model is Dc = 4, the amplitude
mode is unstable, decaying primarily into pairs of Gold-
stone bosons [11–13]. In both 2D and 3D, the longitudi-
nal dynamic susceptibility exhibits an infrared singular-
ity due to the Goldstone modes [14], whose consequences
for the visibility of the amplitude mode have been in-
vestigated extensively in 2D [15–17]. It was noted [14]
that the scalar O(N)-symmetric susceptibility remains
uncontaminated by infrared contributions, which should
permit the amplitude mode to be observed as a well-
defined peak. The (3+1)D O(3) case of TlCuCl3 is at Dc

and the amplitude mode is critically damped, meaning
that its width is proportional to its energy at the mean-
field level [9, 18–20]. This mode can be probed through
the spin response (longitudinal susceptibility) by neu-
tron spectroscopy, and measurements over a wide range
of pressures reveal a rather narrow peak width of just
15% of the excitation energy [10]. The value of this near-
constant width-to-energy ratio is the key to the mode
visibility, thus calling for unbiased numerical calculations
in suitable model Hamiltonians.

FIG. 1. Schematic representation of ground states, excitation
processes, and corresponding gaps in a dimerized antiferro-
magnet. The ratio g = J ′/J of the intra- and inter-dimer
coupling constants controls a QPT from an AFM to a QD
state. In the AFM phase, the excitations are two gapless spin
waves (Goldstone modes, ∆G = 0, red line) plus an amplitude
mode with gap ∆H , corresponding respectively to axial and
radial fluctuations in the “Mexican hat” potential. In the QD
phase, singlet–triplet dimer excitations have gap ∆T .

In this Letter, we provide a systematic investigation
of the dynamics and scaling of the amplitude mode at
coupling values across the QPT in a 3D dimerized spin-
1/2 antiferromagnet, by performing large-scale stochas-
tic series expansion quantum Monte Carlo (SSE-QMC)
simulations and applying advanced stochastic analytic-
continuation (SAC) methods. Thus we provide an unbi-
ased numerical demonstration that the amplitude mode
is critically damped and that its energy, width, and
height obey field-theoretical predictions. Beyond these
universal scaling forms, we quantify the nonuniversal
width-to-energy ratios of the amplitude-mode peaks in
the spin and dimer channels.

We consider the double-cubic geometry shown in Fig. 1
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[21], which consists of two simple cubic lattices whose
sites are connected pairwise by nearest-neighbor Heisen-
berg exchange interactions, Jij ~Si · ~Sj , with Jij = J in
each cubic lattice and Jij = J ′ for inter-cube (dimer)
bonds. Increasing the ratio g=J ′/J drives a QPT where
the ground state changes from a “renormalized classical”
[22, 23] antiferromagnetic (AFM) state to a quantum dis-
ordered (QD) dimer-singlet state (Fig. 1). This transition
is in the same universality class as the pressure-driven
QPT in TlCuCl3. In a recent QMC analysis of the static
properties of the double-cubic system [24], we established
the quantum critical point (QCP) as gc = 4.83704(6)
and quantified the logarithmic (log) scaling corrections
expected near criticality in the AFM state at Dc.

We use SSE-QMC [25, 26] to measure both spin and
dimer correlation functions in imaginary time; technical
details may be found in Sec. SI of the Supplemental Ma-
terial (SM [27]). The former probes S = 1 excitations of
the ground state and contains the longitudinal suscepti-
bility, while the latter, the symmetric scalar response [14–
16], probes S = 0 excitations. We employ SAC methods
[32–37] to obtain high-resolution data for the spin and
dimer spectral functions, and discuss the concepts and
practicalities of this procedure in Sec. SII of the SM [27].
Depending on the value of g, both spectral functions con-
tain features arising from the Goldstone, amplitude, and
triplon (gapped singlet-triplet) excitations. Henceforth
we use the term “Higgs” as shorthand for the amplitude-
mode contributions. The nature and energies of these
modes are represented schematically in Fig. 1.

Our simulations are performed on a system of N = 2L3

sites at an inverse temperature Jβ = 2L, such that the
low-temperature limit, T → 0, is achieved as L → ∞.
The dynamical magnetic (S = 1) response is obtained
from the spin correlation function

S(q, τ) = 〈Sz−q(τ)Szq(0)〉, (1)

where τ is the imaginary time [Eq. (S1)] and

Szq =
1√
N

∑
re−iq·r(S1z

r − S2z
r ), (2)

where superscripts 1 and 2 denote the two cubic lattices.
When analytically continued to real frequency, S(q, τ)
gives the dynamical structure factor, S(q, ω), measured
by inelastic neutron scattering. Our simulations contain
no breaking of spin-rotation symmetry and thus do not
separate the longitudinal and transverse components of
S(q, ω) explicitly. The Higgs mode of the AFM phase
is contained in the longitudinal part, but the transverse
part contains both spin-wave excitations and a multi-
magnon continuum that could obscure the Higgs contri-
bution in the rotationally averaged S(q, ω). However,
unlike the 2D case [38], the transverse continuum is ex-
pected to be very small in 3D, especially at the staggered
wave vector, q = Q = (π, π, π), on which we focus here.
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FIG. 2. (a) Extrapolation of finite-size triplon gaps, using the
form ∆T (L) = a exp(−bL) + c, shown for selected values of
g > gc (QD phase). (b) Triplon gaps in the thermodynamic
limit (blue triangles), shown as a function of |g− gc|/gc. The
red line is a pure mean-field (square-root) form, the blue line
includes the log correction of Eq. (4) with fitted exponent
ν̂ = 0.230(2), and green points show the extrapolated Higgs
energy, ∆H , obtained for values of g < gc (AFM phase) mir-
roring those used in panel (a). The blue dashed line is the
log-corrected ∆T result multiplied by

√
2. Error bars in both

panels are smaller than the symbol sizes.

The scalar (S = 0) dynamical response is obtained
from the dimer correlation function at the zone center,
q = Γ = (0, 0, 0), which is given by

D(Γ, τ) = 〈BΓ(τ)BΓ(0)〉, BΓ =
1√
N

∑
r

Br, (3)

where Br = S1
r · S2

r − 〈S1
r · S2

r〉 is the inter-cubic dimer
bond operator. This quantity was also employed in a
recent study of the (2+1)D (bilayer) model [39]. The
real-frequency quantity D(Γ, ω) may be probed experi-
mentally by Raman scattering [40, 41].

Gap information can also be extracted by a direct
analysis of the large-τ decay of the correlation func-
tions [42, 43]. Considering the spin sector, the small-
est singlet-triplet gap occurs at q = Q and in the QD
phase S(Q, τ) is dominated by the triplon mode. In the
AFM phase, this gap corresponds to the lowest Goldstone
mode, which has only a finite-size energy proportional to
1/N . Thus S(Q, τ) decays very slowly with τ in this
case and the dominant Goldstone contribution threatens
to obscure the Higgs contribution [14–17, 44]. Examples
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of imaginary-time data for S(Q, τ) and of gap extractions
are presented in Secs. SII and SIII of the SM [27].

We begin the discussion of our results by analyzing
the triplon gap in the QD phase (g > gc). For a given
value of g, we extract the finite-size gap, ∆T (L), from
S(Q, τ) for a range of system sizes. As shown in Fig. 2(a),
∆T (L) decreases with increasing L before converging to
the thermodynamic limit. The extrapolated values of
∆T (g) are shown in Fig. 2(b) as a function of the sepa-
ration (|g − gc|/gc) from the QCP.

In the φ4 theory for an O(N) order parameter, at
D = Dc one expects physical quantities to exhibit power-
law scaling with mean-field critical exponents, but with
multiplicative log corrections [3, 45], which have now
been found in a number of recent studies [24, 46, 47].
The scaling form of the triplon gap can be obtained di-
rectly from the correlation length (∆ ∼ 1/ξ), whence

∆T ∼ (|g − gc|/gc)ν ln−ν̂(|g − gc|/gc), (4)

with ν = 1/2 [3, 48] and ν̂ = (N + 2)/2(N + 8) from
perturbative renormalization-group calculations [45, 49],
i.e. ν̂ = 5/22 ≈ 0.227 for N = 3. It is clear from Fig. 2(b)
that Eq. (4) describes the data far better than the pure
mean-field form and, by performing an optimized fit [24]
with ν̂ as a free parameter, we deduce the exponent ν̂ =
0.230(2), fully consistent with the theoretical prediction.

To study the amplitude mode in detail, we analyze
the spectral functions S(Q, ω) and D(Γ, ω) in the AFM
phase (g < gc) near gc. Figure 3 shows both quantities
at g = 4.724 for several system sizes. Because SSE-QMC
calculations of D(Γ, τ) are significantly more demanding
(Sec. SI), these are restricted to L ≤ 16, whereas for
S(Q, τ) we access sizes up to L = 24.
S(Q, ω) [Fig. 3(a)] is dominated by the Goldstone con-

tribution, whose energy (spectral weight) is proportional
to 1/N (N) at T = 0 (becoming the magnetic Bragg
peak as L→∞). The Higgs spectral weight also diverges
as g → gc; away from gc the Higgs mode remains as a
clearly resolved finite-energy peak with convergent spec-
tral weight, as also observed experimentally in TlCuCl3
[9, 10]. In D(Γ, ω) [Fig. 3(b)], the Higgs contribution
is the distinctive low-energy peak. It is separated by a
region of suppressed spectral weight from a broad max-
imum at higher energies due to multiple excitations. At
low energies one expects a characteristic scaling form on
which we comment in detail below.

We observe good convergence with increasing L in each
of S(Q, ω) and D(Γ, ω). The peak widths in both quan-
tities are invariant on increasing the amount of QMC
data, demonstrating that any artificial broadening aris-
ing from the SAC procedure is negligible. Examples of
supporting tests are presented in Sec. SII of the SM [27].
We have confirmed by a bootstrapping analysis that the
fluctuations in the height and width of the lower D(Γ, τ)
peak for L ≥ 10 in Fig. 3(b) reflect statistical errors.
Our system sizes are sufficient for a reliable study of the
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FIG. 3. (a) S(Q, ω) and (b) D(Γ, ω) obtained by SAC at
g = 4.724 for different system sizes. The large low-energy
(Goldstone) peak in panel (a) is cut off in order to show the
secondary (Higgs) peak. The lower peak in panel (b) is the
Higgs mode. The positions of both Higgs contributions con-
verge with increasing L to the same thermodynamic limit, as
shown in the inset of panel (b). Spectral features outside the
energy ranges shown are extremely weak.

L → ∞ limit in both sectors for the g values shown in
Fig. 3 (i.e. g ≈ gc − 0.1).

We find that the positions of the finite-energy peaks
in S(Q, τ) and D(Γ, τ) converge to the same value as
L→∞ [inset, Fig. 3(b)]. In the phenomenological U(1)
model for the broken-symmetry phase, one expects the
S = 0 Higgs mode to be an elementary scalar [50], and
thus in the AFM phase that the Higgs part of the S = 1
spectrum arises from a combination of this scalar with a
gapless spin wave (S = 1, q = ±Q). Although our finite-
size calculations contain no explicit symmetry-breaking,
they reflect this physics directly in that the spin peak lies
higher than the dimer peak and their energy difference
scales with 1/N , as expected for a Goldstone mode. Thus
the consistency between peaks in the S = 0 and 1 spec-
tral functions provides strong confirmation that both do
indeed correspond to the Higgs mode.

In Fig. 2(b) we compare the extrapolated Higgs ener-
gies in the AFM phase with the triplet gaps in the QD
phase at the same distance, |g − gc|/gc, from the QCP.
The predicted

√
2 ratio [44, 46, 48] between ∆H and ∆T

is clearly obeyed over this rather broad coupling range.
We stress that this relation implies the presence of equiv-
alent multiplicative log corrections [Eq. (4)] to both ∆T
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FIG. 4. (a) Scaled spectrum, ∆2
HS(Q, ω/∆H), calculated

with L = 24 for a range of g values. (b) D(Γ, ω/∆H) cal-
culated with L = 16. (c) Width-to-energy ratios shown as
functions of 1/L. Circles and triangles are obtained respec-
tively from D(Γ, ω/∆H) and S(Q, ω/∆H). Dashed lines are
second-order polynomial fits to error-weighted average ratios.

in the QD phase and ∆H on the AFM side.

To investigate the scaling properties of the spectral
functions near the QCP, we normalize ω by the L → ∞
Higgs gap; results for ∆2

HS(Q, ω/∆H) and D(Γ, ω/∆H)
are shown respectively in Figs. 4(a) and 4(b) for the
largest accessible system sizes. The amplitude-mode con-
tributions to both the spin and dimer spectral functions
exhibit near-ideal data collapse when scaled in this way.
The collapse of the peak positions indicates that our data
represent the quantum critical regime and the thermo-
dynamic limit. The collapse of the peak widths demon-
strates the critically damped nature of the Higgs mode.
We note that Fig. 4(a) also indicates the spectral weight
of the next-order S = 1 processes, whose peak positions
near ω = 2∆H suggest excitations involving two Higgs

modes, but statistical errors preclude a deeper analysis.

A universal scaling form for the scalar susceptibility
(dimer spectral function) in the vicinity of the QCP,

D(Γ, ω) ∼ ∆
d+z−2/ν
H Φ(ω/∆H), (5)

has been derived perturbatively in 1/N for the O(N)
model [15–17] and by a 4− ε expansion [44]. In (3+1)D
with z = 1, one expects D(Γ, ω) = Φ(ω/∆H), which is
fully consistent with the data in Fig. 4(b). This type of
scaling has been documented in (2+1)D for both O(2)
[16, 17, 51–53] and O(3) models [39, 53], but Fig. 4(b)
constitutes the only unbiased numerical demonstration to
date in (3+1)D. The infrared tail is expected [14] to have
the scaling form D(Γ, ω) ∝ ω4, but with the available
system sizes is too weak to verify this. For S(Q, ω/∆H),
we obtain data collapse by appealing to the result [9] that
the integrated spectral weight diverges as 1/∆H when
g → gc, which requires a rescaling by ∆2

H [Fig. 4(a)].

The scaling function Φ(ω/∆H) is shown in Ref. [44]
to approach a δ-function at g = gc, due to the presence
of log corrections in the width-to-energy ratios [18, 19].
For a quantitative analysis of the Higgs-peak widths, in
Fig. 4(c) we show the size-dependence of the ratios ob-
tained from the FWHM σS of the spin and σD of the
dimer peak. The error bars obtained by bootstrapping
are significant, but it is clear that (i) the L-dependence
of σS/∆H and σD/∆H is weak, (ii) any g-dependence
is weak, and (iii) σD exceeds σS by a factor of 3. We
fit error-weighted averages of the width ratios, obtained
from all g values at each L, to a quadratic polynomial
in 1/L, as shown in Fig. 4(c). At the mean-field level,
we estimate the constant ratios σS/∆H = 0.15(4) and
σD/∆H = 0.43(6). The log dependence on |g − gc| is
too weak to discern given the quality of the present data
and the separation from the critical point. However, fu-
ture calculations with smaller |g−gc|, larger system sizes,
and higher precision in G(τ) and D(τ) should be able to
detect log corrections also in the width-to-energy ratios.

Remarkably, our SAC value for σS/∆H on the double-
cubic lattice is in excellent agreement with the neutron
scattering results for TlCuCl3 near its QCP [9, 10, 20].
Given the difference in lattices and couplings, this result
mandates a deeper investigation of possible reasons for a
very weak dependence on microscopic details. The signif-
icantly larger value of σD/∆H reflects the different states
probed by the two spectral functions, namely the ele-
mentary Higgs (S = 0) and combined Higgs–Goldstone
(S = 1) excitations. This also implies different matrix-
element effects in the peak shapes, which are evident in
the different scaling forms of the peak areas in Fig. 4.

In summary, we have used large-scale quantum Monte
Carlo simulations to investigate the quantum critical dy-
namics of the amplitude (Higgs) mode in a 3D dimerized
antiferromagnet. Our work demonstrates that modern
SAC methods are capable of resolving complex spectral
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functions, here with two peaks and non-trivial scaling
behavior of both the peak widths and heights. Our re-
sults not only verify the scaling predictions based on field-
theory methods but also provide line-width information
and nonuniversal factors that lie beyond current analyt-
ical treatments. The type of calculations reported here
can be performed for different momenta, to study the
dispersion of the amplitude mode and the evolution of
its width in the spin and dimer sectors, as well as for the
lattice geometry and exchange couplings of TlCuCl3.
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