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We show that the off-diagonal exchange anisotropy drives Mott insulators with strong spin-orbit coupling to
a classical spin liquid regime, characterized by an infinite number of ground states and Ising variables living
on closed or open strings. Depending on the sign of the anisotropy, quantum fluctuations either fail to lift the
degeneracy down to very low temperatures, or select non-coplanar magnetic states with unconventional spin
correlations. The results apply to all 2D and 3D tri-coordinated materials with bond-directional anisotropy, and
provide a consistent interpretation of the suppression of the x-ray magnetic circular dichroism signal reported
recently for β-Li2IrO3 under pressure.

Introduction – The search for quantum spin liquids (QSLs)
has been a central thread of correlated electron material re-
search since their initial proposal decades ago. [1] Ideally,
QSLs evade magnetic order down to zero temperature and
harbor a remarkable set of collective phenomena, includ-
ing topological ground-state degeneracy, long-range entan-
glement, and fractionalized excitations. [2–4] While the long
activity on frustrated Mott insulators with 3d ions has lead
to several candidate QSLs with dominant isotropic interac-
tions, [3] a certain class of 4d and 5d materials, the so-called
Jackeli-Khaliullin Kitaev (JKK) systems, [5–10] with strong
spin orbit coupling (SOC) and dominant anisotropic interac-
tions has emerged in recent years as another prominent play-
ground for QSLs. [11] By now, several two- (2D) and three-
dimensional (3D) materials have been identified in the JKK
class, all described by pseudo-spin Jeff = 1/2 Kramer’s dou-
blets. Most notably, the layered A2IrO3 (A=Na,Li) [12–18]
and α-RuCl3, [19–24] and the 3D Iridates (β,γ)-Li2IrO3, [25–
28] all proximate to exactly solvable Kitaev QSL’s. [5, 9, 29]

The key ingredients for the desired degree of frustration
in the JKK systems is the three-fold coordination and the
compass-like, nearest-neighbor (NN) Ising interactions along
bond-dependent quantization axes. [7, 30–39] While this so-
called Kitaev anisotropy is the dominant interaction, all JKK
materials show magnetic order at sufficiently low tempera-
tures, [12–28] consistent with predictions that Kitaev QSLs
are fragile against perturbations. [7, 8, 30, 40–44]

Nevertheless, the aspiration for spin liquid physics in JKK
systems still stands. The new experimental direction is to use
external perturbations, such as magnetic field, [45] chemical
substitution, [46] and pressure. [28] For β-Li2IrO3, for exam-
ple, x-ray magnetic circular dichroism (XMCD) experiments
show a strong reduction of the signal with pressure, and a
complete suppression around 2 GPa. [28] Since the system re-
mains insulating under pressure, the authors suggest that the
system is driven into a spin-liquid regime, and naturally the
Kitaev QSL is the first suspect. Surprisingly, however, ac-
cording to two independent ab initio studies, [39, 47] pressure
pushes the system further away from the ideal Kitaev model,
and the interaction becoming increasingly relevant is the sym-
metric off-diagonal exchange Γ. [30–32, 37, 38, 42]

Motivated by these reports, we set out to investigate the
physics of the JKK systems in the region where Γ is the dom-
inant coupling. Remarkably, the qualitative results are shared
by all 2D and 3D JKK systems. The Γ coupling drives these

systems to a classical spin liquid regime, characterized by an
infinite number of ground states. This is consistent with the re-
port that the spin correlation length becomes extremely small
as we go into the large Γ regime. [32] The infinite degeneracy
is not accidental but arises from an infinite number of zero-
(0D) and one-dimensional (1D) gauge symmetries that exist
only for classical spins. For quantum spins, the degeneracy is
eventually lifted by the order-by-disorder mechanism at an en-
ergy scale which depends strongly on the sign of Γ. For Γ>0,
the leading quantum fluctuations fail to remove the frustration,
leading to a ‘cooperative paramagnet’ down to very low tem-
peratures. For Γ< 0, fluctuations select a non-coplanar state
with vanishing total moment. Both scenarios are consistent
with the XMCD data, although the latter might be more rele-
vant for β-Li2IrO3, according to ab initio studies. [39, 47]

Model – The JKK systems have three types of NN bonds,
α={x, y, z}, shown as
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where Si denotes the pseudospin 1/2 at site i. The Hamilto-
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where 〈ij〉 denotes NN sites, and ± accounts for the sign
modulation of the couplings on x- and y-bonds in the 3D sys-
tems. [48] For the 2D case all bonds have the plus sign.

Classical limit – Let us consider the classical limit where
Si are vectors of length S, and begin with the 2D honeycomb
case. The highly frustrated nature of this model is first re-
vealed by the fact that the lowest eigenvalue of the 6×6 in-
teraction matrix Λk in momentum space [49] is completely
flat. In fact, this holds for all six bands, with λ1 = −|Γ|,
λ2 =λ3 =−|Γ|/2, λ4 =λ5 = |Γ|/2, and λ6 = |Γ|, see Fig.1.

To understand the nature of the ground states and why there
is an infinite number of them, we search for states that satu-
rate the lower bound of the energy per site λ1S

2. [49] Con-
sider a pair of spins, say S0 and S1 of (1), which interact via
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FIG. 1. Spectrum λ1−6/|Γ| of the matrix Λk entering the Fourier
transform of the classical energy, see Supplementary material. [49]
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x
1 ). If these spins were isolated from the rest,

then their energy would be minimized by placing the spins on
the xy-plane with Sx1 = ζSy0 , Sy1 = ζSx0 , ζ =−sgn(Γ). Simi-
larly, for the x-bond of (1), we would get Sy3 =ζSz0 , Sz3 =ζSy0 ,
and for the y-bond of (1), Sx2 = ζSz0 , Sz2 = ζSx0 . Returning to
the lattice problem, the idea is to require that the two compo-
nents involved in each Γ term satisfy the respective relations
above, without specifying the third component for the mo-
ment. This is done as follows: (i) We choose a direction for
the central spin of (1) and parametrize it as

S0 = (η1a, η2b, η3c), (3)

where a= |Sx0 |, b= |Sy0 |, c= |Sz0 |, η1 =sgn(Sx0 ), η2 =sgn(Sy0 )
and η3 = sgn(Sz0 ). Then, (ii) we fix two components of the
three neighbors as:

S1 = (ζη2b, ζη1a, S
z
1 ), S2 = (ζη3c, S

y
2 , ζη1a),

S3 = (Sx3 , ζη3c, ζη2b).
(4)

Then, (iii) we fix accordingly two components of the neigh-
bors of S1,2,3, etc, until we cover the whole lattice. The total
energy of the generated configurations saturates the lower en-
ergy bound, and are therefore ground states. Indeed, the en-
ergy contribution from the cluster (1) is E =−2(a2 + b2 +

c2)|Γ| = −2|Γ|S2, and this holds for any such cluster in the
lattice. Since each bond is shared by two sites, the total energy
per site is E/N=−|Γ|S2, which saturates the lower bound.

Now, the reason why there are infinite ground states lies in
the freedom to choose the third component of the spins, i.e.,
Sz1 , Sy2 , Sx3 , etc. Imposing the spin length constraint shows
that this freedom is associated with the overall signs:

Sz1 = ζη4c, S
y
2 = ζη5b, S

x
3 = ζη6a, (5)

where ηi = ±1 are Ising variables. The choice of signs in
front of the η’s give the simplest representation of the state as
we see below, but is otherwise arbitrary. To see how many
independent η’s exist, we look closely what happens around
the central cluster (1), see Fig. 2. We see that each ηi appears
only around a single hexagon, i.e. we can label the states by
assigning the η’s to the hexagons. This parametrization in
terms of local Ising variables gives a total of 2N/2 states for
fixed {a, b, c}. Note that if two (one) of {a, b, c} vanish then
2/3 (1/3) of the η’s are idle and we get 2N/6 (2N/3) states
instead. On top, there is the degeneracy associated to {a, b, c}.

FIG. 2. Classical ground states of the Γ model on the 2D honeycomb
lattice, where a2 + b2 + c2 =S2 and ηi =±1.

The η-parametrization reveals that the local zero-energy
modes responsible for the extensive degeneracy correspond
to flipping one particular component for each of the six spins
of a hexagon. For the η1 hexagon of Fig. (2), for example, the
zero mode amounts to flipping the signs of Sx0 , Sy1 , Sz4 , Sx5 ,
Sy10, and Sz2 . This operation is in fact a symmetry of the clas-
sical Hamiltonian, so the degeneracy associated with the η’s
is not accidental but symmetry related. Inspecting the form of
the Γ terms, these symmetries involve strings of alternating x-
y-z bonds which happen to be hexagons in the 2D honeycomb
case. We shall come back to this for the 3D cases below.

Another key aspect of the η variables is that they split into
three inequivalent types that occupy the vertices of three inter-
penetrating triangular sublattices A, B and C (red, green and
blue in Fig. 2). Type-A (resp. B, C) variables appear to-
gether with a (resp. b, c). This structure is reflected directly
in the so-called fluxes {Wh}, known from the quantum Kitaev
model. [5] Indeed, from Fig. 2:
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where ã= a/S, b̃= b/S and c̃= c/S. [50] The most striking
manifestation of the three-sublattice structure of the η’s, how-
ever, appears when we include quantum fluctuations below.

The above steps can be repeated for both β-Li2IrO3 and
γ-Li2IrO3, see Fig. 3. There are again infinite ground states
characterized by Ising variables η of three types, as in 2D.
There is however one qualitative difference in the nature of
the zero-energy modes which stems from the way alternating
x-y-z bonds propagate in the lattice. In β-Li2IrO3, they form
infinite strings, so all η’s are nonlocal [see e.g. the η2 string in
Fig. 3 (a)] and the degeneracy is sub-extensive. In γ-Li2IrO3,
the alternating x-y-z bonds form either closed hexagons or
infinite strings. Hence, some η’s are local (giving an extensive
degeneracy), like η1, η12, η2, η8, η5 and η9 in Fig. 3 (b), but
the rest live on open strings, like η3.
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FIG. 3. Classical ground states of the Γ model on β-Li2IrO3 (a) and γ-Li2IrO3 (b), for Γ> 0. The ± signs labeling the x or y bonds denote
the signs of the associated Γ coupling relative to that on the z bonds. [48] The dotted strings show the open strings where η2 (a) and η3 (b) live.

Quantum order-by-disorder – The 0D and 1D gauge sym-
metries that are responsible for the zero-energy modes are
very common in compass-like models and act to suppress lo-
cal order by virtue of a generalized Elitzur’s theorem. [51–53]
Here, however, these symmetries exist only for classical spins,
because they involve time reversal and affect only part of the
system (a hexagon or an open string). For quantum spins the
degeneracy is lifted and local order is still possible. This leads
us to the important question of order-by-disorder, which we
address here by real space perturbation theory (RSPT). [54–
57] In this approach, one introduces local axes ezi along the
classical spin directions, and then splitsH into a diagonal part
H0 = h

∑
i(S−Si · ezi ), describing fluctuations in the local

field h=2|Γ|S, and a perturbation V=H−H0, which couples
fluctuations on different sites. [49]

It turns out that the physics can be captured already by
the leading, short-wavelength corrections from second-order
perturbation theory. The three types of bonds, say (S0,S3),
(S0,S2) and (S0,S1) of Fig. (2), give (disregarding constants):

δE03 = (ΓSã2/8)η1η6 − |Γ|Sã4/16,

δE02 = (ΓSb̃2/8)η2η5 − |Γ|Sb̃4/16,
δE01 = (ΓSc̃2/8)η3η4 − |Γ|Sc̃4/16.

(9)

These expressions give two important insights:
(i) Different types of η’s do not couple. This is a conse-

quence of three gauge-like symmetries which flip the sign of
all η’s of a given type [49]; Different η types eventually cou-
ple in fourth order, but the coupling is much smaller, see be-
low. Each η-sublattice then is described by Ising couplings

JA = ΓSã2/8, JB = ΓSb̃2/8, or JC = ΓSc̃2/8. Remarkably,
when Γ>0, these models are highly frustrated for all 2D and
3D cases. In 2D, each η-sublattice is described by a triangu-
lar Ising antiferromagnet (AF), the prototype of classical spin
liquids. [58] For the hyper-honeycomb, the frustration arises
again from AF η-triangles, like {η1, η4, η6} or {η2, η7, η9}
or {η5, η8, η10} of Fig. 3 (a), which form at the length-ten
loops of the lattice, where open strings pass nearby. The same
happens for the nonlocal η’s in the stripy-honeycomb, where
two effective triangles such as {η1, η4, η6} and {η3, η5, η7} in
Fig. 3 (b), are formed at a hexagon (η2) of the complementary
color. At the same time, the local variables form 1D AF chains
(formed by hexagons), and there is also a frustrating coupling
between local and nonlocal η’s. So, in all cases, there is strong
frustration within each η-sublattice when Γ>0.

(ii) Irrespective of the ground state of each η-sublattice, the
dependence of the total energy on {a, b, c} via JA, JB and JC
drops out because the sublattices have identical 〈ηη′〉 correla-
tions and because a2+b2+c2 =S2. However, the second terms
of Eq. (9) give a fourth-order cubic anisotropy,

Eani/N = −|Γ|S
32

(ã4 + b̃4 + c̃4), (10)

which is the leading mechanism to lift the degeneracy asso-
ciated to {a, b, c}. Here, Eani is minimized when {ã, b̃, c̃}=
{1, 0, 0}, {0, 1, 0} or {0, 0, 1}. Then, 2/3 of the η’s become
idle and only the behavior of the remaining 1/3 has to be un-
derstood.

For Γ> 0, the systems remain highly frustrated even well
below the scale set by Eani. Residual corrections eventually
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stabilize some order. In 2D, for example, tunneling loop pro-
cesses give rise to an XYZ model and a peculiar state with two
orders, one magnetic and one nematic. [59]

For Γ<0, the systems order magnetically below a scale set
by Eani. The order corresponds to a FM alignment of η’s of
one type (the others become idle). In terms of spins, this is a
multi-sublattice non-coplanar state, with spins pointing along
the cubic axes. The 2D honeycomb has three spin sublattices
and a finite moment along 〈111〉, while for 3D we get six sub-
lattices due to ± signs in Eq. (2). So, the ordered state of the
3D systems has zero total moment.

Higher-order terms – To highlight the unimportance of
higher-order corrections we report here the fourth-order RSPT
corrections on the connected cluster (1), for the most quan-
tum S = 1/2 case. [49] The correction to JA is δJA =

Γ
768 (−14ã2+33ã4−25ã6+23ã2b̃2c̃2), and similarly for δJB
and δJC by cyclic permuting {ã, b̃, c̃}. These corrections are
very small (at maximum they are only 1/8 of the second-
order couplings). Next, the correction to Eani is δEani =
−|Γ|
3072 [15(ã4+b̃4+c̃4)+95ã2b̃2c̃2−22(ã8+b̃8+c̃8)]. The sec-
ond and third terms do not alter the physics, i.e., the energy
is again minimized for {ã, b̃, c̃} along the cubic axes. Finally,
there is a coupling between two η-types, JAB(η1η6)(η2η5),
where JAB = 7|Γ|

384 ã
2b̃2, etc. These terms favor also {ã, b̃, c̃}

along the cubic axes. Altogether then, the second-order terms
give an excellent description of the order-by-disorder physics.

Role of perturbations – At the mean-field level, the infi-
nite degeneracy is immediately lifted by perturbations, such as
NN and next-NN Kitaev (K1 and K2 [59]), or NN exchange
(J1). [32] The phase diagrams of Refs. [32, 60] show, for ex-
ample, four states emerging from the Γ point as we includeK1

and J1. These states are special members of the infinite man-
ifold described above, see also [49]. This picture changes at
the quantum level. Such tetra-critical points will be replaced
by a finite window that is still governed by the physics of the
Γ point. The reason is that quantum energy corrections scale
as ΓS, while the lifting at the mean-field level involves scales

like K1S
2 or J1S

2. This leaves a finite region Γ & ξK1S
or ξJ1S, where the physics of the Γ point survives. The nu-
merical prefactor ξ depends on the JKK system and the per-
turbations. We can foresee, however, that the highly frustrated
physics of the positive Γ model should be more stable on the
ferromagnet K1 side, because K1 acts to renormalize JA, JB
and JC by −K1S

2ã2, −K1S
2b̃2 and −K1S

2c̃2, respectively.
This is important because K1 is FM in all JKK materials.

Discussion – Our predictions are consistent with the
XMCD data in β-Li2IrO3. [28] At ambient pressure, β-
Li2IrO3 shows an incommensurate order which is very close
to a partially polarized state. [28] The ab initio studies [39, 47]
show that |Γ|, which is already appreciable at ambient pres-
sure, increases by 10-15 % at 2 GPa, while |K1| drops by a
remarkable 40-50 %. Clearly then, the system departs quickly
from the vicinity of the partially polarized state, toward the
classical manifold of the Γ model, and eventually orders ei-
ther at a very small energy scale if Γ> 0, or at the scale Eani
if Γ< 0. Either way, one expects a strong suppression of the
field-induced ferromagnetic moments. According to ab ini-
tio studies [39, 47] and fits to experiments, [48] Γ is negative,
which would mean that the system orders in the above non-
coplanar state. This can be confirmed e.g., by NMR or µSR.

The broader perspective of this study is that, besides the
well-known Kitaev QSL, Mott insulators with strong spin-
orbit coupling and bond-dependent interactions host yet an-
other exotic correlated regime. Remarkably, the key predic-
tions are common for all available JKK materials, providing a
distinct platform for exploring this direction.
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