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Topological crystalline insulators (TCI) are a new class of materials which have metallic surface
states on select surfaces due to point group crystalline symmetries. In this letter, we consider a
model for a three-dimensional (3D) topological crystalline insulator with Dirac nodes occurring on
a surface that are protected by the mirror and time reversal symmetry. We demonstrate that the
electromagnetic response for such a system is characterized by a 1-form bµ. bµ can be inferred from
the locations of the surface Dirac nodes in energy-momentum space. From both the effective action

and analytical band structure calculations, we show that the vortex core of ~b or a domain wall of a

component of ~b can trap surface charges.

Topological phases of matter have been at the fore-
front of condensed matter physics for the past decade.
One reason for the excitement is that topological phases
can exhibit electromagnetic responses that display their
topological nature. The integer quantum Hall (IQH) ef-
fect was the first such system, and its quantized Hall
conductance is characterized by a topological integer [1]
multiplying the conductance quantum e2/h. In recent
years, the ten-fold, periodic table classification of elec-
tronic topological insulators and superconductors with
time-reversal (TR) T , particle-hole (PH) C, and/or chi-
ral symmetry S was completed in Refs. [2–4], and ush-
ered in the concept of a symmetry protected topological
(SPT) phase. The electromagnetic (EM) response the-
ories of many of the topological insulator (TI) phases
were developed in Ref. [3], and extended from what was
known about the IQH to all fermionic SPTs. For exam-
ple, the 3D T -invariant topological insulator has an odd
number of Dirac cones on each surface, and harbors a
half quantum Hall effect when T is broken on the sur-
face. An odd number of Dirac cones, and the correspond-
ing Hall effect, can never occur in a purely 2D system
with the same symmetries without interactions. Indeed,
the surface quantum Hall effect is actually a signature
of a bulk EM response: the topological magneto-electric
effect[3, 5, 6] with a response coefficient determined by a
Z2 topological invariant[3].

After the periodic table was complete, and after many
exciting materials predictions and discoveries[7–14], the
classification of topological crystalline phases (TCIs)
with point/space-group symmetries, such as reflection
and discrete rotation, was initiated and continues to be
an active area of research[15–31]. One highlight of this
line of research was the prediction and experimental con-
firmation of a 3D TCI phase in PbSnTe[32–35]. The
topological properties of this system are protected by
mirror symmetry, and it exhibits an insulating bulk with
an even number of symmetry-protected Dirac-cone sur-
face states on mirror-symmetric surfaces. The goal of
this article is to predict a characteristic electromagnetic
response property that can be observed in PbSnTe and

similar 3D TCIs protected by mirror symmetry (mTCIs).

Three-dimensional mTCIs are characterized by integer
invariants: the mirror Chern numbers CM [16]. To define
and illustrate the consequences of the CM let us consider
a system with mirror symmetry Mz in the z-direction
with M2

z = −1. We can label eigenstates in the kz = 0
and kz = π planes of the Brillouin zone (BZ) with the
eigenvalues±i ofMz, and this allows one to define mirror

Chern numbers CM (Λ) = C+i(Λ)−C−i(Λ)
2 , where C±i(Λ)

is the usual Chern number of each mirror sector in the
plane Λ = 0, π. When a CM is non-vanishing, then, on
mirror-invariant surfaces, say one normal to x̂, there will
be Dirac cones protected by the mirror symmetry. Fur-
thermore, these cones lie in mirror invariant lines in the
surface BZ projected from the corresponding Λ planes.
The number of stable Dirac cones on each mirror line is
given by CM (Λ)[16]. If we allow for broken translation
symmetry, then the total number of stable surface cones
is CM ≡ CM (Λ1) + CM (Λ2). We illustrate the case with
CM (0) = 2, CM (π) = 0 in Fig. 1 where we have two sta-
ble Dirac nodes on the surface perpendicular to x̂ on the
kz = 0 plane.

In this article we will show that mTCIs have a robust
electromagnetic (EM) response that is determined by
both a topological property (the existence of stable sur-
face states determined by CM ), and a geometrical prop-
erty (the momentum and energy locations of the surface
nodes). To show this, we first provide a lattice model for
a mTCI built from two copies of a 3D time-reversal in-
variant TI on a cubic lattice. By itself, this system has a
trivial topological magnetoelectric effect, but when cou-
pled to a field bµ which preserves the mirror symmetry,
yet splits the surface Dirac nodes in energy-momentum
space, an additional EM response is generated. In this
article we only consider systems which also retain T sym-
metry since the experimentally realized mTCIs have T -
symmetry, and it will simplify some discussions.

For the simplest case with CM = 2, and with T -
symmetry, we can obtain a response theory of the mTCI
via analogy with the 3D TI. In the continuum limit, the
field bµ in which we are interested couples to the theory
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precisely as a valley gauge field for the two species of
surface Dirac cones/valleys. By performing a diagram-
matic calculation in the continuum limit, we find that
the effective response action is given by:

STCI[A, b] =
e

8π2

∫
d4x εµνρσΘfµνFρσ, (1)

where Θ = π inside the bulk of the mTCI, and fµν , Fµν
are the field-strengths of bµ and Aµ. The surface of the
mTCI, can be thought of as a domain wall of Θ from π
to 0, and Eq. (1) implies a surface response S2D[A, b] =
e

4π

∫
surf

d3xεµνρbµ∂νAρ bound to the Θ domain wall.
This surface response matches an EM response of a 2D
Dirac semi-metal (DSM) with broken inversion symmetry
if we identify bµ with the energy/momentum separation
of the Dirac node valleys[36, 37]. This might have been
anticipated, since the even number of Dirac nodes on the
surface of the mTCI is similar to the electronic structure
of a 2D DSM. However, we find precisely half the coef-
ficient that would occur in a 2D DSM with mirror and
T (T 2 = −1) symmetries, which makes it anomalous.
Ultimately, the EM response of the mTCI implies local-
ized charge and/or current density bound at defects in
the bµ field on the surface. To verify the validity of the
result Eq. (1) obtained in the continuum limit, we ex-
plicitly calculate the microscopic origin of the response
from a lattice model bound state calculation. Finally, we
discuss experimental proposals and predictions.

FIG. 1. An illustration of a topological crystalline insulator
in 3D with two surface Dirac cones localized on the surface
perpendicular to the x-direction. bµ = (b0, by) is the energy-
momentum separation of the Dirac nodes. For the model that
we construct, the Dirac nodes are stabilized byMz symmetry.
We show the mirror plane in the bulk, and mirror lines on the
surfaces by the green rectangle and its dashed boundary.

Lattice Model for TCI.— Let us begin with the lattice
Hamiltonian for a single copy of TI given by[3]:

HTI = sin kxΓx + sin kyΓy + sin kzΓ
z −m(kx, ky, kz)Γ

0,
(2)

where m(kx, ky, kz) = m+ cos kx + cos ky + cos kz and m
controls the bulk gap, and hence the topological phase.
The matrices Γµ satisfy a Clifford algebra, and are given
by Γ0 = τxs0, Γx = τys0, Γy = τzsx, Γz = τzsz,

and Γ5 = τzsy, where the zeroth components τ0 and
s0 are identity matrices. We can take τ to be an or-
bital degree of freedom and s is spin; hence the time-
reversal operator is T = isyK where K is complex
conjugation. Further, this model has mirror symme-
tries along the i-th directions with Mi = ΓiΓ5 where
i = x, y, z, and importantly M2

i = −1. For example, we
have MzHTI(kx, ky, kz)M−1

z = HTI(kx, ky,−kz)

To introduce a lattice model of the TCI, let us strictly
enforce Mz, and add an additional flavor degree of free-
dom σµ to the TI model (2). We will start with a

block diagonal form, H
(0)
TCI = σ0 ⊗ HTI. The topologi-

cal phases and surface states of H
(0)
TCI are determined by

m. Without loss generality, we consider a case where
−3 < m < −1; in this case there are two Dirac nodes
(one for each copy) centered at the Γ-point on any sur-
face (see Supplementary Material (SM) Sec. IIIA). T -
symmetry enforces C+i(Λ) = −C−i(Λ), and this model
has CM (0) = 2, CM (π) = 0, and CM = 2.

To produce our phenomena of interest variousMz pre-

serving perturbations should be added to H
(0)
TCI. [38] In-

cluding some such perturbations we can write down a
more generic lattice model for the TCI :

HTCI = sin kxσ
0Γx + (sin kyσ

0 + byσ
y)Γy + sin kzσ

0Γz

− (m+ cos kx + cos ky + cos kz)σ
0Γ0 + b0σ

y, (3)

where tensor products are implicit, and we will omit σ0

from now on for compactness. One can verify that the
Hamiltonian (3) is invariant under Mz and T (when
b0 = 0). One can also introduce bx and bz terms that
couple to the Hamiltonian in a similar fashion to by, and
will fill out the entire bµ = (b0, bx, by, bz) field. Specific
mirror symmetries will enforce some entries to be zero,
for exampleMz enforces bz = 0. We have left out a non-
zero bx, and some other possible Mz and T -invariant
terms since we will usually specialize to a particular sur-
face (n̂ = x̂) for convenience, and these additional terms,
when small, will not impact our analysis. We note that
b0 breaks time reversal, but not mirror, and we include it
in the Hamiltonian because it leads to an interesting EM
response contribution. We show in the SM Sec. IIIA that
b0 and by move the zero-energy Dirac nodes in the sur-
face BZ from the Γ-point to (E, ky, kz) = (±b0,±by, 0),
which, from Eq. (1), is exactly what we need to generate
a non-vanishing EM response.

Electromagnetic response.— For our choice of m the
TCI Hamiltonian (3) is naturally expanded in the contin-
uum limit around the Γ-point. For b0 = by = 0, the con-
tinuum Hamiltonian has two identical copies, each with
eigenvalue σy = ±1 [39] given by

H(a) = kxΓx + kyΓy + kzΓ
z +m′ cos θ(a)Γ0 +m′ sin θ(a)Γ5

(4)
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where m′ > 0, a = 1, 2 corresponds to the two TI
sectors with σy = ±1, and we have introduced a new
angle parameter θ(a) for each TI block. Under mir-
ror symmetry Mz = ΓzΓ5, the Hamiltonian satisfies:
MzH

(a)(kx, ky, kz, θ
(a))M−1

z = H(a)(kx, ky,−kz,−θ(a)).
Thus, mirror symmetry enforces θ(a) to take quantized
values of 0 or π. Indeed, our lattice model (3) maintains
θ(a) = π throughout the mTCI phase with CM = 2.

The topological magnetoelectric response [3, 5, 6] of
such a system, which is obtained by gapping the surface
Dirac nodes with a T -breaking mass, is trivial since we
have two copies of the usual TI. However, we now show
that there is a response characteristic of a mTCI, once a
Mz-breaking mass term is added instead. To calculate
the response in the continuum limit we couple each of

the continuum Hamiltonians to its own gauge field A
(a)
µ

via k→ k+A(a). A diagrammatic calculation similar to
those in Refs. 3 and 40 shows that

S[A(a)
µ ] =

1

32π2

∫
d4x θ(a)(x)εµνρσF (a)

µν F
(a)
ρσ (5)

where F
(a)
µν = ∂µA

(a)
ν −∂νA(a)

µ is the curvature associated

with the gauge field A
(a)
µ . The symmetric combination of

the gauge fields A
(1)
µ and A

(2)
µ represents the usual EM

field Aµ, while the antisymmetric combination generates
the energy-momentum separation of the Dirac nodes bµ,

i.e., eAµ = 1
2 (A

(1)
µ + A

(2)
µ ), bµ = 1

2 (A
(1)
µ − A(2)

µ ). Thus,
the total effective response action is given by:

S[A, b] =
1

32π2

∫
d4x εµνρσ

[
e2(θ(1) + θ(2))FµνFρσ (6)

+ 2e(θ(1) − θ(2))fµνFρσ + (θ(1) + θ(2))fµνfρσ

]
where fµν = ∂µbν − ∂νbµ is the curvature of the bµ.
The first (topological magnetoelectric effect) and second
terms (the mTCI response of interest) both generate EM
observables, though the former has a trivial/doubled co-
efficient. The current and charge responses depend on
changes of the θ(a) which naturally appear at surfaces,
and with signs determined by symmetry breaking mass
terms on the surface. A T -breaking mass mRΓ5, similar
to that for a TI [3], will generate ∆θ(1) = ∆θ(2), while a
Mz-breaking but T -preserving mass mAσ

yΓ5 will gener-
ate ∆θ(1) = −∆θ(2). The former will generate a (trivial)
magnetoelectric response, while the latter will generate
the mixed response:

S[A, b] =
e

8π2

∫
d4xΘ(x)εµνρσfµνFρσ, (7)

where Θ(x) ≡ θ(1)(x) = −θ(2)(x). For our model we
need to introduce the mass term mAσ

yΓ5. As noted,
the preservation of T ensures the first term of Eq. (6),
a surface Hall effect, vanishes. The sign of the mA term
also fixes the sign of Θ = π sgn(mA). The same effec-

tive action can also be derived in a direct diagrammatic
calculation by evaluating the diagram in Fig. 2 of the
SM.

Let us illustrate the physical consequences of Eq. 7.
The surface of the mTCI can be thought of as a do-
main wall of Θ = Θ(~x) where Θ changes from π to 0
traversing from the mTCI to vacuum. The effective ac-
tion now reduces to a response localized at the Θ domain
wall: STCI = e sgn(mA)/(4π)

∫
surf

d3xεµνρfµνAρ. Taking
a derivative of the effective action with respect to Aµ, i.e.,
jµ = δS/δAµ, we obtain the responses:

j0
surf = −e sgnmA

2π
∂zby, jzsurf = −e sgnmA

2π
∂0by,

jysurf =
e sgnmA

2π
∂zb0. (8)

These equations are analogs of the Streda formula and
Ohm’s law for a Hall current, where ∂zby, ∂0by, and ∂zb0
are the “magnetic field” and “electric field” of the 1-form
bµ. The first equation of (8) indicates that additional

charge density is bound at a flux/vortex core of ~b. For
a domain wall by = |by| sgn z on the yz-surface of the

TCI, which has a “magnetic flux” of ~b, Eq. (8) predicts
that there exists a charge density of j0 = e|by| sgn(mA)/π
trapped at the center of the domain wall. Macroscopi-
cally these responses arise from the half quantum Hall
effect of each surface Dirac cone. They effectively see
opposite electric and magnetic fields, but have opposite
masses from the mirror-breaking mA. Hence, their re-
sponses add and do not cancel. The defect structure
that generates this response is illustrated for this case in
Fig. 2. At the end we discuss the physical setup needed
to experimentally probe this response.

FIG. 2. An illustration showing the kind of domain wall that
can probe the response derived in Eq. 7. There is an interface
between the TCI and the vacuum at x = 0 and an interface
between two TCIs with different bµ at z = 0. The quantities
b0, by naturally form a domain wall in the x direction at z = 0.

These results are based on the particular lattice model
(3). However, they hold for any model with CM =
CM (0) + CM (π) = 2. We show in the SM Sec. II that
for a system with Mz and T (or even with weakly bro-
ken T ), CM = 2 necessarily gives rise to two stable Dirac
cones, and thus, upon the introduction of proper mirror-
breaking mass terms, the response is described by Eq. (8)
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(see Ref. 41 for a discussion of the usual magnetoelectric
response for CM = 2 systems).

For higher CM = N , there exist N stable surface Dirac
nodes, and in principle more complex TCI responses can
be obtained, but we leave discussion of those for fu-
ture work (see Ref. 36 for some related examples in 2D
DSMs). For cases with CM = 0, the surface Dirac cones
can be gapped without breaking Mz. However, if the
bulk band inversions are at different k-points, then on
certain surfaces the two Dirac cones can be located at
different locations in the surface BZ. In this case gapping
the Dirac cones, when mirror is preserved, requires break-
ing translational symmetry. By analogy with a weak TI
[42, 43], we dub the system with surface Dirac nodes pro-
tected byMz and translational symmetry a weak mTCI.
When translation symmetry is intact, a weak mTCI can
have a response (8) on certain surfaces with mirror sym-
metry, but not necessarily all of them.

Microscopic origin of the response.— Eq. (8) is ob-
tained from the continuum limit. However, from Eq. (3)
we see byσ

y couples to the system like a gauge field only
in the continuum limit, i.e., when by is small. To obtain a
complete picture, it is useful to verify the response from
a microscopic lattice calculation.

From the TCI lattice model Eq. (3), we first solve for
the surface Dirac states on the boundary of a mTCI (x <
0) with the vacuum (x > 0). The surface Dirac cones at
x = 0 are given by

H2D =− (sin ky + byσ
y)sx − sin(kz)s

z −mAs
yσy, (9)

where mA is the mirror symmetry breaking mass, and
the momentum range over which H2D is valid is given by
(see SM Sec. IIIB) |m− 1 + cos ky + cos kz| < 1. In the
continuum limit where |by| is small, we can drop the sine
in Eq. (9) and neglect the upper cutoff for ky,z. Next, for
the non-uniform by with a domain wall by(z) = |by0| sgn z,
the solution of Eq. (9) is given by

Ψ(x = 0, ky, z) = exp

{
−
∫ z

0

[kyσ
y + by(z′)]dz′

}
Ψ0(ky),

(10)

where Ψ0(ky) satisfies syσyΨ0(ky) = −1. Eq. (10) de-
scribes two bound states at each ky, corresponding to the
two eigenvalues of σy, both localized in the z-direction at
the zero of the integrand of the exponent. Since by ranges
from −|by0| to |by0|, only states for which |ky| < |by0|
have bound state solutions. Therefore, the total num-
ber of bound states is 2 × 2|by0|/(2π/Ly). For a fi-
nite system, the surface x = 0 will also have an oppo-
site domain wall with by(z) = −|by0| sgn z. There exist
the same number of bound states at the opposite do-
main wall with syσy = 1. With a small but finite mA,
the states localized at opposite domain walls are split
away from zero energy and can be unambiguously filled

(all states on one domain wall are filled). Due to the
usual arguments [44], each state generates a localized
charge − e2 sgnmA. Therefore we find that the bound
state charge density is j0 = −e|by0| sgn(mA)/π, and is
in agreement with Eq. (8). We note that to see this re-
sponse, we only need to break mirror symmetry with an
infinitesimal mass term, while time reversal symmetry is
intact.

For a larger magnitude of the domain wall |by0|, the
charge response can deviate from the prediction from Eq.
(8) and become non-universal, but this happens only with
a gap closing transition in the bulk. To this end, for a
sufficiently small |by0|, the Dirac nodes given by Eq. (9)
simply get shifted. However, depending on the momen-
tum range of validity of H2D, a larger value of |by0| can
either eliminate the Dirac nodes or introduce additional
Dirac nodes that can gap out each original one. In both
cases, there is a gap closing in the bulk which indicates a
transition from a mTCI to a trivial insulator. We show
in the SM Sec. III that, as long as the bulk gap does
not close, the response (8) from the continuum model
remains exact even in the lattice model. However for
the cases when a large by eliminates or cancels the orig-
inal Dirac nodes on the two sides of the domain wall,
the charge density bound at the domain wall becomes
non-universal.

Implication for experiments.— As discussed above,
the universal bulk contribution to the topological
magneto-electric effect [3, 5, 6] is absent in a TCI; the
Faraday effect and Kerr angles are non-universal when
TR is explicitly and infinitesimally broken. However, our
predicted response in Eq. (8) can be directly detected
in other experiments, which requires engineering a do-
main wall or time gradient of the bµ field, i.e., the mo-
mentum/energy displacement of the Dirac nodes. The
surface Dirac nodes of a TCI can be moved in k-space
via compression or dilation strains [46]. For SnTe, the
surface Dirac nodes perpendicular to the (001) direction
arise at ±k1,±k2 and are protected by mirror symmetry
along (110) and (110) axes, and are related by a C4 rota-
tion. With Isotropic compression or dilation, bi’s for both
pairs of Dirac nodes increase or decrease. With uniaxial
compression or stretching that breaks the C4 symmetry,
bi,1 increases while bi,2 decreases, or vice versa. A spa-
tially inhomogeneous compression/dilation can thus gen-
erate the domain wall structure. A temporal gradient of
b can be generated by surface acoustic waves produced
by electromagnetically stimulating a piezo-electric layer
deposited on the surface. The mass terms of the surface
Dirac fermions can be generated [32, 47] through struc-
tural distortions where the atoms are displaced. After
setting up the spatially-varying or time-dependent bµ the
localized charges can be detected by Scanning Tunneling
Microscopy (STM) [48, 49] or the Scanning Single Elec-
tron Transistor Microscopy (SSETM) [50], while surface
currents can be observed by a SQUID magnetometer.
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