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Exploiting the enabling power of the Lanczos method in momentum space, we determine ac-
curately the quasiparticle and scaling properties of disordered three-dimensional Dirac semimetals
surrounding the quantum critical point separating the semimetal and diffusive metal regimes. We
unveil that the imaginary part of the quasiparticle self-energy obeys a common power law before,
at, and after the quantum phase transition, but the power law is nonuniversal, whose exponent is
dependent on the disorder strength. More intriguingly, whereas a common power law is also found
for the real part of the self energy before and after the phase transition, a distinctly different be-
havior is identified at the critical point, characterized by the existence of a nonanalytic logarithmic
singularity. This nonanalytical correction serves as the very basis for the unusual power law be-
haviors of the quasiparticles and many other physical properties surrounding the quantum critical
point. Our approach also allows ready and reliable determination of the scaling properties of the
correlation length and dynamical exponents. We further show that the central findings are valid
for both uncorrelated and correlated disorder distributions, and should be directly comparable with
future experimental observations.

PACS numbers: 73.43.Nq, 71.55.-i, 71.23.-k

Investigation of quantum criticality has been an impor-
tant paradigm in condensed matter physics. The recent
discoveries of different classes of topological materials,
such as topological insulators[1–3] and Dirac or Weyl
semimetals[4–8], have drastically enriched the realm of
possible quantum phase transitions. In this endeavor of
fundamental importance, particular attention has been
paid to the effects of various physically realistic disorder,
as multiple scattering of electrons from such imperfec-
tion centers may alter the quasiparticle properties of the
electrons, and thereby could cause qualitative variations
in the global topological properties of the whole systems.
Representative examples include those from a trivial An-
derson insulator to a topological Anderson insulator[9–
11], from a Weyl semimetal to a quantum anomalous
Hall state[12], from the quantum anomalous Hall state to
an Anderson insulator[13], and from a three-dimensional
(3D) Weyl or Dirac semimetal to a diffusive metal[14, 15].
A deeper microscopic understanding of the quasiparticle
characteristics surrounding each type of the topological
quantum phase transitions is a necessary first step to-
wards potential technological applications of such new
states of matter.

Among the different topological quantum phase tran-
sitions (QPT), that from a 3D Dirac semimetal to a dif-
fusive metal induced by disorder has gained intensive at-
tention over the years[14, 15]. In retrospect, this type of
QPT was already investigated three decades ago in Frad-
kin’s pair of classic papers[16, 17]. The renewed interest
has been stimulated by the latest advances in materials

realization of 3D Dirac semimetal[18–20]. Various impor-
tant aspects of the transitions have been revealed based
on the perturbative renormalization group (RG) analyt-
ical approaches[21–23] or numerical simulations of var-
ious physical properties surrounding the quantum crit-
ical point (QCP)[14, 15, 24, 25]. However, the disor-
der effects on the quasiparticle behaviors, from which
many other physical observables can be derived, remain
to be fully explored. Early attempts to obtain the self-
energies of the quasiparticles invoked the self-consistent
Born approximation[26, 27], which naturally breaks down
because of its ignorance of multiple scattering events even
for strong disorder[26, 28]. On a deeper and more sub-
tle level, for such (2D or 3D) Dirac systems, the low-
energy quasiparticle properties can be significantly renor-
malized by disorder scattering from the whole energy
band[15, 29], thereby demanding highly nontrivial an-
alytical or numerical approaches in their full and reliable
determination.

In this Letter, we determine accurately the quasi-
particle and scaling properties of disordered 3D Dirac
semimetals surrounding the QCP separating the Dirac
semimetal (DSM) and diffusive metal (DM) regimes, with
all higher orders of disorder scatterings fully treated. The
enabling computational approach is the Lanczos method
in momentum (or k) space[30, 31]. Our simulations
clearly reveal that the imaginary part of the quasipar-
ticle self-energy obeys a common power law before, at,
and after the quantum phase transition, but the power
law is nonuniversal, whose exponent is dependent on the
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FIG. 1: (Color online). (a) Real part and (b) imaginary part
of self-energy as a function of energy for different disorder
strength (0.5 6 W 6 2.8). The real part of self-energy func-
tion ReΣ(ω) gradually deviates from linearity on the approach
to the QCP. While ImΣ(ω) is quadratic for weak disorder, be-
coming linear at the QCP, and acquires a finite value ImΣ(0)
on the DM-side.

disorder strength W . More intriguingly, whereas a com-
mon power law is also found for the real part of the self
energy before and after the phase transition, a distinctly
different behavior is identified at the QCP, characterised
by the existence of a nonanalytic logarithmic singular-
ity. This nonanalytical correction serves as the very basis
for the unusual power law behaviors of the quasiparti-
cles and many other physical properties surrounding the
QCP. The present approach also allows ready and reliable
determination of the scaling properties of the correlation
length and dynamical exponents. We further show that
the central findings are valid for both uncorrelated and
correlated disorder distributions, and should be directly
comparable with future experimental observations.

Here we note that the Lanczos method in momen-
tum space has been employed in our earlier studies
of disorder effects in the specific 2D Dirac systems of
graphene[30, 31]. Nevertheless, in these 2D systems,
there is no such a semimetal to diffusive metal phase tran-
sition, as the disorder in graphene is perturbatively rel-
evant for any infinitesimal or stronger disorder (namely,
these is no critical disorder strength). In stark contrast,
the present study focuses on 3D Dirac systems that har-
bor the existence of quantum phase transition from the
semimetal to diffusive metal regime at the critical disor-
der strength, making the present study qualitatively and
quantitatively beyond the earlier studies.

To start, we consider the Dirac Hamiltonian on a cubic
lattice with periodic boundary conditions [32]:
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FIG. 2: (Color online). (a)The solid black circles are our
numerical results of the real part of self-energy for disorder
strength W = 1.5, 2.4, 2.6, 2.8t. The red lines are the fitting
curves of Eq.(3). At the QCP(W = 2.6t) , the fitting pa-
rameters are 2∆/π = 0.49 and ωc = 1.05. (b) The solid
black circles are the numerical results of the imaginary part
of self-energy for same disorder strength. The red lines are
the corresponding power law (2)fitting curves.

H = H0 + V

=
∑

r,µ̂

(|r+ eµ̂〉
itαµ

2
〈r|+H.c.) +

∑

r

|r〉V (r)I〈r|, (1)

where |r〉 is the four component Dirac spinor composed
at site r, eµ̂ is a unit vector along the µ̂ direction, I
represents the 4 × 4 identity matrix and αµ are 4 × 4
anticommuting Dirac matrices. V (r) represents a po-
tential disorder distributed uniformly and independently
between [−W/2,W/2]. In the following calculations, the
hopping parameter (t) and the lattice spacing (a) is set
to t = a = 1 for simplicity.
We use the well developed Lanczos recursive method

to compute the retarded self-energy (Σ)[30, 31]. In order
to be free from the the finite size errors, we adopt a large
lattice containing millions of sites (3003). Moreover, a
small artificial cut-off η = 0.001 is used to simulate the
infinitesimal imaginary energy in our simulations.
Before detailed discussion, we would like to give sev-

eral remarks. First, the self-energy in general depends
on energy (ω) and wave vector (k). However, our sim-
ulation shows that the self-energy is only dependent on
the energy (ω) even above the critical disorder strength.
This behavior indicates that the anomalous dimension
of the Dirac field vanishes. This result is consistent
with one-loop renormalization group calculation[22, 23],
note that our simulation is exact. Second, real parts
of self energy function ReΣ(ω) reflect how the quasipar-
ticle dispersion relation and the values of quasiparticle
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FIG. 3: (Color online). The fitting parameters Σ0 (the blue
triangles) and α (the black squares) as a function of the dis-
order strength. The vertical dotted (red) line denotes the
critical disorder strength Wc. The horizontal dotted (red)
line signifies α = 1. The disorder strength is measured in the
units of t.

residue are modified by the quantum interference aris-
ing from coherent multiply scattering. Thus, the finding
of the fitting functions for the nonlinearity of ReΣ(ω) is
very important to understand the quasiparticle behav-
iors around the QCP. However, the direct guess of the
fitting function is quite difficult. Third, the quasiparticle
reside Zk defined as Zk = 1

1−∂ωReΣ(ω) |ω=Ek
can be used

to measure the disorder effect on the quasiparticle behav-
iors where the quasiparticle dispersion Ek is the roots of
ω − ~vfk − ReΣ(ω) = 0. The group velocity vg(k) is
given by vg(k) =

1
~

∂Ek

∂k
= Zkvf . Thus, the quasiparticle

residue Zk and the group velocity vg show the same scal-
ing behavior around the QCP[25]. And to describe the
decay time of quasiparticle, the elastic mean free time is
defined as τk = ~

−2ZkImΣ(Ek)
[33]. Here, vf is the bare

group velocity for clean three dimensional Dirac fermion
and the Planck constant ~ is set to 1.
Figure 1 plots the real part (a) and imaginary part (b)

of self-energy as a function of energy for different dis-
order strengths. As shown, the self-energy has distinct
structures as the disorder strength increases. The real
part of self-energy function in the DSM phase gradually
deviates from linear behavior in the vicinity of the QCP
and it becomes absolutely nonlinear in DM phase. Let us
focus on the imaginary part ImΣ(ω) firstly, we find that
it remains a quadratic function of low energies in the
weak disorder regime. However, the quadratical behav-
ior changes as the disorder strength increases. Especially
at the critical point, it becomes linear dependent of the
energy. Above the critical strength, a finite contribution
to ImΣ(ω) at zero energy is observed. Therefore, those
observations suggest us to use a general power law ex-
pression as following to fit our numerical results:

ImΣ(ω) = Σ0 −∆|ω|α. (2)

We find the fitting is excellent as shown in Fig.2(b).
Moreover, we can obtain the fitting function of ReΣ(ω)
via the Kramers-Kronig relation [34]:

ReΣ(ω) =



























Cω, (α = 2)

Cω +Dsgn(ω)|ω|α, (1 < α < 2)

−
2∆

π
ωln|

ωc

ω
|, (α = 1)

Dsgn(ω)|ω|α + Cω, (0 < α < 1)
(3)

where sgn(ω) is the signum function, C = −
2ωα−1

c

π(α−1)∆ and

D = −tan(π2α)∆ are constants determined by ∆ and α.
Note that they are independent of Σ0. Fig. 2(a) shows
that the fitting is also quite well as expected since they
should obey the Kramers-Kronig relation. Eqs.(2) and
(3) combined with our numerical calculated exponent (α)
are the central results of this work.

Note that the nonanalytic corrections significantly
renormalize the quasiparticle properties surrounding the
QCP, making the quasiparticle spectral function at the
QCP to be much broader, carrying substantially more
weight in the wings than that of a normal Fermi liquid
(see Supplemental Material Section I). Meanwhile, the
nonanalytic correction also leads to the unusual behav-
iors of the physical observables. As an example, the dc
conductivity shows an unusual temperature-dependent
behavior near the QCP (See Supplemental Material Sec-
tion II). It should be pointed out again that it is impossi-
ble to obtain this nonanalytical correction by using per-
turbative theory or self-consistent calculations[27], since
this kind of nonanalytic correction originates from mul-
tiple scattering events.

As shown in Fig. 3, Σ0 has a sufficient small value
which equals to η (W < 2.4) in the DSM phase. This
indicates that the rare region contribution [35–37] to the
density of states at zero energy ρ(0) (∝ Σ0) should be
quite small (≪ η )[38] if it exists. Very close to the crit-
ical point (2.4 < W < 2.65), Σ0 increases smoothly but
of the same order of magnitude as η. Thus, within the
accuracy of our calculations, it is possible there is no fi-
nite contribution to Σ0 arising from disorder scattering
before the QCP since this smooth contribution to ρ(0)
maybe arise from the finite size effect owing to the cor-
relation length exceeds the system size. After the QCP,
Σ0 grows rapidly when the disorder further increases (i.e.
W > 2.65). In this situation, the DSM phase is driven
into the DM phase by disorder effect.

Fortunately, note that ReΣ is independent of Σ0. As
we approach the QCP from the semimetal side, we can
determine the critical point by the condition of the van-
ishing of the group velocity vg at Dirac point. As shown
in Fig.3, we find that in the DSM phase the the power law
exponent (black squares) remains to be α ≈ 2 for weak
disorder (W < 1.9), and then reduces continuously from
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α ≈ 2 to 1 as the disorder strength increases towards the
QCP (1.9 < W < 2.6). For W > Wc (Wc = 2.6), α is
reduced to less than 1. Notice that α = 1 (W = Wc) cor-
responds to vg(0) = 0 because the quasiparticle residue
logarithmically vanishes in this situation, plotted as the
horizontal dotted (red) line in Fig. 3. Combined these re-
sults, we obtain the critical disorder Wc = 2.6t shown as
the vertical dotted (red) line in Fig. 3, which agrees well
with the predicted value (Wc = 2.55± 0.05) in Ref.[25].
We then discuss how the low-energy quasiparticle be-

haviors change crossing the phase transition (see Table
I). For weak disorder regime (W < 1.9), since the linear-
dispersion relation is still maintained (shown as the green
lines in Fig. 4(a)), we have α = 2, the quasiparticle
residue Zk = 1/(1 − C), and the elastic mean free time
τk ∝ E−2

k . In the intermediate regime(1.9 < W < Wc),
the exponent α gradually reduces, leading to the mod-
ifications of Zk and τk accordingly, as shown in quasi-
particle dispersion plotted as the light green lines in
Fig.4(a). Remarkably, at the QCP (W = Wc), it is found
Zk ∝ (ln|ωc/Ek|)

−1 arising from nonanalytic contribu-
tion to the real part of self-energy. Thus, Zk vanishes
logarithmically as Ek → 0 and vg(k) → 0, as labeled
with the red line in Fig. 4(a). At the same time, τk be-
haves as τk ∝ E−1

k ln|ωc/Ek| in the limit Ek → 0. In the
DM-phase (W > 2.6), the disorder is a relevant perturba-
tion and the system displays ”non-Fermi liquid” behav-
ior with power-law energy dependence of the quasiparti-
cle residue Zk ∝ E1−α

k , removing all remnant characters
of the quasiparticle. In this regime, vg(k) goes to zero
as a power law vg(k) ∝ E1−α

k in the limit Ek → 0, as
shown in Fig.4(a) with the blue lines. One also finds the
lifetime τk ∝ Z−1

k ∝ Eα−1
k ≪ E−1

k . Both Zk and τk
exhibit quite different behavior compared with the one-
loop renormalization group predictions (See Supplemen-
tal Material Section I).
Next we further discuss the critical behavior near QCP.

We define the the dimensionless disorder strength param-
eter δ = |W −Wc|/Wc for the following discussion. Near
the QCP, the spatial length scale ξl diverges as ξl ∼ δ−ν

and the temporal correlation length ξt can be measured
as ξt ∼ ξzl ∝ δ−vz , where the critical exponents ν and z
characterize the correlations in space and time, respec-
tively. In the language of dimensional analysis by as-
suming that a quantity of dimension (length−D) is pro-
portional to ξ−D

l and of dimension time ∝ ξt or energy
∝ ξ−1

t near the critical point, the quasiparticle disper-

TABLE I: Results of the elastic mean free time τk and the
quasiparticle residue Zk behaves as Ek in low energy limit for
four different regimes.

W ≤ 1.9 1.9 < W < Wc W = Wc W > Wc

τk ∝ E−2

k
|Ek|

−α |Ek|
−1ln|ωc/Ek| |Ek|

α−1

Zk ∝ 1

1−C

1

1−C−αD|Ek|α−1
(ln|ωc/Ek|)

−1 |Ek|
1−α
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FIG. 4: (Color online). (a)The quasi-particle dispersion for
different disorder strength (0.5 6 W 6 2.8). (b) The quasi-
particle dispersion at the QCP (the red squares) and its power
law fit (the black line) Ek = Akz with z = 1.45 ± 0.05.
(c) The renormalized velocity at the Dirac point (the red
squares)in DSM phase as a function of the dimensionless dis-
order strength δ = |W − Wc|/Wc and its power law fit (the
black line) with the exponent of 0.57. (d) −ImΣ(0) (the red
squares) in DM phase as a function of δ and the power law
fit (the black line) with an exponent of 1.65.

sion Ek ∼ ξ−1
t ∼ ξ−z

l ∝ kz [39] and the group velocity
vg(0) ∼ ξl/ξt ∝ δ(z−1)ν [14]. Hence, we use the power-law
form (Ek = Akz) fitting of the quasi-particle dispersion
at the QCP to determine z. As shown in Fig. 4(b), the
power-law fitting of Ek yields a value of z = 1.45± 0.05
[40]. To determine the exponent ν, here we propose
a method to obtain the critical exponent ν from the
critical behavior of the group velocity at Dirac point
vg(0) = vf/(1−C) by the fitting parameter of Eq.(3). As
shown in Fig. 4(c) by fitting the data of the vanishing ve-
locity on the DSM side towards the critical point (δ = 0)
to vg(0) ∼ δ(z−1)ν , we find νDSM = 1.14± 0.10. In DM
phase, since the group velocity keeps vanishing at the
Dirac point, we have to use ρ(0) ∼ −ImΣ(0) ∼ δ(3−z)ν

following the previous studies[14, 24, 25]. By fitting the
data we find νDM = 1.06 ± 0.16 as shown in Fig. 4(d).
Our simulations about the critical exponents are consis-
tent with the values obtained to the one-loop renormal-
ization group calculation[21–23].

So far, we have limited our discussions to situations
with uncorrelated Anderson disorder. To enable more
direct comparisons with future physically realistic mea-
surements, we expand our model studies to systems with
correlated disorder, as described by random yet varyingly
correlated Gaussian potentials. We find that, whereas
the specific location of the QCP sensitively depends on
both the strength and degree of correlation of the disor-
der, the very existence of the quantum phase transition
and scaling properties of the critical exponents are in-
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sensitive to the details of such disorder distributions (See
Supplemental Material Section III). This further explo-
ration effectively broadens the applicability of the main
findings of this work.

Additionally, our calculations further show that it is
not essential to reveal our main findings by fixing the
Fermi level at the critical point (the Dirac point), be-
cause the novel anomalous behavior can be observed over
a substantial energy (see Fig. 4) or temperature range.
As a promising candidate system, we suggest Na3Bi[41],
whose Fermi surface is close to the Dirac point. By dis-
ordering it to the quantum phase transition regime, we
expect that anomalous quasiparticle and unusual scaling
behaviors are likely to be observed.

In summary, by using the numerically exact Lanczos
method in k space, we have calculated the real and imag-
inary parts of the quasiparticle self-energy for disordered
3D Dirac semimetals, and then determined the nonan-
alytic correction to the self-energy Σ(ω) at or above
the QCP, which leads to the unusual behaviors of the
low-energy quasiparticles and other physical observables.
These new and striking predictions call for direct exper-
imental validations. Moreover, the numerical approach
introduced here is transformative, and can be applied to
other quantum phase transitions induced by disorder.
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