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Beryllium (Be) is an important material with wide applications ranging from aerospace compo-
nents to X-ray equipments. Yet a precise understanding of its phase diagram remains elusive. We
have investigated the phase stability of Be using a recently developed hybrid free energy computation
method that accounts for anharmonic effects by invoking phonon quasiparticles. We find that the
hcp → bcc transition occurs near the melting curve at 0 < P < 11 GPa with a positive Clapeyron
slope of 41±4 K/GPa, which is more consistent with recent experimental measurements. This work
also demonstrates the validity of this theoretical framework based on phonon quasiparticle to study
structural stability and phase transitions in strongly anharmonic materials.

PACS numbers: 63.20.Ry, 81.30.Bx, 61.50.Ks, 63.20.D-, 64.70.K-

Resolving phase boundaries is challenging for both ex-
perimentation and theory given the uncertainties from
several sources, especially at very high pressure (P) and
high temperature (T). Beryllium (Be) is a typical sys-
tem whose phase diagram remains an open problem de-
spite intense investigations. It assumes a hexagonal close-
packed (hcp) structure at relatively low T [1]. However,
unlike other metal systems [2], the stability of the body-
centered cubic (bcc) phase at high T, and the associated
hcp/bcc phase transition are not well understood yet. Be
is important for both fundamental research [3–6] and
practical applications. Being a strong and light-weight
metal, it has been widely used in a broad range of techno-
logical applications in harsh environments and extreme
PT conditions, e.g., up to T > 4,000 K and P > 200
GPa [7–11].

Equipped with diamond anvil cells (DAC) technique
coupled with X-Ray diffraction, recent experimental ef-
forts have made significant progress in understanding
the structure and phase stability of Be [12–18]. Lazicki
et al. [12] conducted a systematic study of Be covering
wide PT ranges: 8 < P < 205 GPa and 300 < T <
4, 000 K [12]. There are also several other experiments
conducted at ambient temperature for pressures up to
200 GPa [13, 17]. In these measurements, no sign of bcc
symmetry was ever captured. In addition, a report from
Evans et al. indicates that there is no bcc Be for the
pressure range of 15 < P < 50 GPa for temperatures
up to 2,000 K (see Ref. [19] for associated discussion).
These experimental evidences hint that bcc Be is likely
to be a high temperature phase within a narrow pressure
region at relative low pressures, if it exists at all. In-
deed, bcc Be was only observed [20] at T > 1, 500 K
around ambient pressure before melting (The melting
temperature at ambient pressure TM ∼ 1, 550 K). Sim-

ilar result was reported by Abey [21] by using differen-
tial thermal analysis, where the hcp/bcc phase bound-
ary between 0 < P < 2.5 GPa is quite near the melt-
ing line. On the contrary, through temperature depen-
dent resistance, Francois and Contre inferred that the
hcp/bcc phase boundary between 0 < P < 6 GPa has
a negative Clapeyron slope (−52 ± 8 K/GPa) [22]. Ac-
cording to experimental measurements made by Lazicki
et al. [12] and others [13, 17], this result, however, no
longer holds. On the theory side, the study of Be’s phase
diagram using conventional methods encounters signifi-
cant difficulties. The lattice dynamics of bcc Be is highly
anharmonic, and the widely used quasi-harmonic approx-
imation (QHA) and Debye model are not able to capture
such effect [19, 23–28]. For this reason, theoretical study
of bcc Be and the associated hcp/bcc phase transition is
missing for P < 11 GPa (density < 2.1g/cc) where bcc Be
is dynamically unstable at 0 K [24]. At P > 11 GPa, bcc
Be is dynamically stabilized by pressure and the QHA
might, in principle, be applied. However, the hcp/bcc
boundary [23–25] predicted by the QHA does not agree
with experiments [12], suggesting that anharmonic effects
still play an important role at higher pressures.

In this Letter, we report a new investigation of the
phase stability of bcc Be and the associated hcp → bcc
phase transition boundary up to 30 GPa and tempera-
tures up to 2,000 K. We have used a recently developed
hybrid approach [29, 30] that combines first-principles
molecular dynamics (MD) and lattice dynamics calcula-
tions to address anharmonic effects in the free energy.
In this method, the concept of phonon quasiparticles of-
fers a quantitative characterization of the effects of lat-
tice anharmonicity [31, 32]. We show that Be exhibits
pronounced anharmonic effects in both the bcc and hcp
phases. Specifically, our results reveal the dynamical sta-
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bilization of bcc Be with increasing T. The bcc phase,
however, is favorable only in a narrow temperature range
near TM , with hcp → bcc phase boundary having a posi-
tive Clapeyron slope of 41± 4 K/GPa. The bcc stability
field shrinks with increasing pressure and eventually dis-
appears at around 11 GPa. This result agrees overall
with experiments [12–18, 20, 21] and differs from other
hcp/bcc phase boundaries (e.g., Mg [33]), usually display-
ing a negative Clapeyron slope.

In the present approach, phonon quasiparticles are nu-
merically characterized by the mode projected velocity
autocorrelation function [29, 30],

〈V(0) ·V(t)〉q,s = lim
t0→∞

1

t0

∫ t0

0

V∗

q,s(t
′) ·Vq,s(t

′ + t)dt′,

(1)

where Vq,s(t) =
∑N

i=1

√
Miv(t) · ǫ̂iq,s exp(iq · Ri) is the

mode projected and mass weighted velocity for normal
mode (q, s) with wave vector q; vi(t)(i = 1, ..., N) is the
atomic velocity produced by first-principles MD simu-
lations with N atoms, and Mi and Ri are the atomic
mass and coordinate of atom i, respectively. ǫ̂iq,s(i =
1, ..., N) is the polarization vector of normal mode (q, s)
calculated using density functional perturbation theory
(DFPT) [34]. For a well-defined phonon quasiparticle,
the velocity autocorrelation function displays an oscilla-
tory decaying behavior and its Fourier transform, i.e., the
power spectrum,

Gq,s =

∫
∞

0

〈V(0) ·V(t)〉q,sexp(iωt)dt, (2)

should have a Lorentzian-type line shape [29, 30]. The
renormalized phonon frequency ω̃q,s, and the linewidth,
Γq,s can then be obtained as discussed in more details in
the Supplemental Materials.

The concept of phonon quasiparticle reduces the com-
plex problem of interacting anharmonic phonons to an
effective non-interacting system [31], such that the con-
ventional kinetic gas model and, to a great extent, the
theory of harmonic phonons are still applicable. More-
over, since structural phase transition is triggered by lat-
tice vibrations for many cases, insight into the transition
mechanism can be also obtained by monitoring the vari-
ation of frequencies and line widths of phonon quasipar-
ticles.

We used the Vienna ab initio simulation package
(VASP) [36, 37] to carry out first principles MD simu-
lations on 4 × 4 × 4 supercells (128 atoms) of Be. We
used the generalized gradient approximation of Perdew,
Burke, and Ernzerhof [38] and the projector-augmented
wave method [35] with an associated plane-wave basis
set energy cutoff of 350 eV. For metallic Be, the finite
temperature Mermin functional [46, 47] was used. Sim-
ulations were carried out at a series of volumes (V):

6.21 < V < 8.71Å
3
/atom for bcc Be and 6.35 < V <
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FIG. 1. Mode projected velocity auto-correlation func-
tions of the TA1 acoustic mode (q, s) at q = N with a har-
monic frequency of 18.2 THz of bcc Be at (a) 400 K and (b)
1,000 K, respectively. (c) and (d) show the corresponding
power spectra. In (c), the shaded area between 16.2 THz and
17.6 THz covers two major peaks, indicating the breakdown of
the phonon quasiparticle picture. In (d), the vertical dashed
line at 16.8 THz indicates the frequency of the well-defined
phonon quasiparticle.

8.83Å
3
/atom for hcp Be. For hcp Be, proper aspect ratio

(c/a) is adopted to obtain good hydrostatic conditions for
specific volume and temperature. Temperatures ranging
from 300 to 2,800 K are controlled through the Nosé dy-
namics [40]. The considered volumes and temperatures
result in a pressure range of 0 < P < 30 GPa. For
each volume and temperature, multiple independent MD
runs (5 parallel replica) were performed to improve phase
space sampling quality that also allow for evaluation of
statistical uncertainties. Each MD run lasted 50 ps and
used a time step of 1 fs. Harmonic phonon frequencies
and normal modes were calculated using density func-
tional perturbation theory (DFPT) [34].

Before proceeding, we should clarify the general un-
derstanding of the hcp → bcc transition. The low T
and low P hcp structure relates to the bcc structure
through the zone center transverse optical (TO) mode
and a macroscopic strain. This mode consists of opposite
displacements of neighboring (0001) planes along 〈1010〉
and softens with increasing T. This is not necessarily
a soft mode transition, but generally a first order tran-
sition with negative Clapeyron slope [33]. The (0001)
plane transforms into the (110) plane of the bcc phase.
This picture was validated by an early variable cell shape
molecular dynamics study [44]. The opposite bcc → hcp
transition involves the lowest transverse acoustic mode
(TA2) at q = [1/2, 1/2, 0], the N point of the Brillouin
zone, marked by an open circle in Fig. 2(a). With this
in mind we monitor closely the behavior of these modes
with changing T.

We first investigate the behavior of phonon quasiparti-
cles at different temperatures. For bcc Be, phonon quasi-
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particles are not well defined at low T as found in other
systems [31], but recovered at high T for unstable (soft)
modes e.g., TA2. The analysis of this mode is shown in
Fig. S2 of the Supplementary material. It is more inter-
esting to notice that at low T, phonon quasiparticles are
not well defined even for certain stable modes with posi-
tive harmonic frequencies. Fig. 1 shows 〈V(0) ·V(t)〉q,s
and the corresponding power spectra of the TA1 phonon
mode at N calculated at 400 K (Fig. 1(a)) and 1,000
K (Fig. 1(b)). This mode is marked by an open square
in Fig. 2(a). Although 〈V(0) · V(t)〉q,s at 400 K dis-
plays an oscillatory behavior, the amplitude decay is non-
monotonic (Fig. 1(a)). Consequently, the power spec-
trum has two major peaks within the shaded area as
shown in Fig. 1(c). This indicates that the frequency of
this mode cannot be well constrained, or equivalently, the
corresponding phonon quasiparticle is not well-defined.
In contrast, at 1, 000 K 〈V(0) ·V(t)〉q,s exhibits a nicely
decaying oscillatory behavior, Fig. 1(b). The correspond-
ing power spectrum now has a well-defined Lorentzian
line shape with a single and well defined peak, Fig. 1(d).
It is thus straightforward to identify the renormalized
frequency of this mode as 16.8 THz. Similarly, all other
quasiparticle mode frequencies sampled by the 4x4x4 su-
percell are equally well defined. As previously indicated
[29, 30], these renormalized phonon frequencies plus the
normal modes enable the calculation of the renormalized
force constant matrix and complete phonon dispersions.
This quantitative characterization of phonon quasiparti-
cles and renormalized phonon dispersion provide a solid
foundation for studying thermal properties.
Figure 2(a) compares the anharmonic phonon disper-

sion of bcc Be at 1,000 K with the harmonic phonon dis-
persion calculated using DFPT. Results are obtained at

the static equilibrium volume of bcc Be, 7.81Å
3
/atom.

There are noticeable differences between the anharmonic
and harmonic phonon dispersions. In particular, the un-
stable (soft) TA2 branch along the Γ − N line stabi-
lizes when high temperature anharmonic effects are ac-
counted for. This indicates that bcc Be is stabilized by
anharmonic effects. To gain further insight into anhar-
monic effects, we analyze T-dependent phonon frequency
shifts. Fig. 2(c) shows that the frequency of the bcc
zone edge phonon mode at q = N associated with the
TA2 branch calculated at fixed volume varies non-linearly
with T. Lowest order many-body perturbation theory
(MBPT) [41] predicts a linear frequency shift with T.
Therefore, as expected, higher order anharmonic effects
ignored in the perturbative treatment play an important
role here.
The calculated anharmonic phonon dispersion over the

whole Brillouin zone makes it possible to calculate the
free energy in the thermodynamic limit (N → ∞). Since
hcp Be is stable at low T for the entire pressure range of
interest, the lattice thermal properties have been stud-
ied within the QHA [23–25] without further examina-

FIG. 2. (a) Anharmonic phonon dispersion at 1,000 K (blue
solid curves) and harmonic phonon dispersion calculated us-

ing DFPT (grey dashed curves) both at V = 7.81Å
3

/atom,
the static bcc Be equilibrium volume. The two transverse
branches are labeled TA1 and TA2, respectively. (b) Anhar-
monic phonon dispersion calculated at 1, 000 K (blue solid
curves) and harmonic phonon dispersion calculated using

DFPT (grey dashed curves) both at V = 7.89Å
3

/atom, the
static hcp Be equilibrium volume. The experimental data is
shown for comparison [48]. (c) Temperature dependent fre-
quency shifts of the TA2 q = N mode [open circle in (a)]
and of the TO q = Γ mode [open circle in (b)] calculate at
constant volume and (d) at constant zero pressure. The pro-
cedure to convert from constant volume to constant pressure
was described in [29]. The vertical dashed line in (d) indicates
the hcp/bcc transition temperature.

tion of the validity of the approximation. This naturally
brings up a question: how important are anharmonic ef-
fects in the free energy in this seemingly stable structure?
Fig. 2(b) compares the anharmonic phonon dispersion at
T = 1, 000 K and the harmonic phonon dispersion of
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FIG. 3. (a) Free energy F (V, T ) versus volumes of Be for bcc
(solid symbols) and hcp (opened symbols) phases at different
temperatures. (b) Free energy G(P, T ) versus temperature
of Be for bcc (solid lines) and hcp (dashed lines) phases at
different pressures. In (a) and (b), the error bars are too
small to be visible.

hcp Be calculated at a fixed volume of 7.89Å
3
/atom cor-

responding to zero static pressure. The differences, al-
though not alarming, are still significant in most of the
Brillouin zone. A detailed analysis of individual phonon
modes in the Supplementary material reveals that the fre-
quency shifts with increasing T can be positive, negative
or nearly zero, demonstrating the complexity of lattice
anharmonic effects. What is important here is that the
large frequency shifts in hcp Be should be incorporated
into the free energy calculation for more accurate evalua-
tions of thermodynamic properties and phase boundaries.

The large frequency shifts not only reveal pronounced
anharmonic effects but also shed light on the microscopic
mechanism of this phase transition. As mentioned ear-
lier, the hcp and bcc structures are related by a combina-
tion of phonon displacements and a macroscopic strain
[42]. Together they provide a path for the hcp → bcc
transition. The frequency of the zone center TO mode
drops significantly from 14.2 to 12.3 Thz when T in-
creases from 0 to 1,600 K (see Fig. 2(c)). This observation
is consistent with expectations based on the anticipated
transformation mechanism [33, 43, 44]. We note that
although the frequency shift is very large at 1,600 K,
the picture of phonon quasiparticle is still valid for the
hcp phase (see the Supplementary material for detailed
analysis). As mentioned earlier, from the Brillouin zone-
folding relation, the corresponding mode in bcc Be is the
zone edge TA2 mode at q = N , whose property is shown
in Fig. 2(c) and (d).

We now demonstrate that anharmonic effects are crit-
ical for obtaining this hcp → bcc phase boundary. When
using anharmonic T-dependent phonon dispersions, the
QHA free energy formula is no longer valid whereas the
entropy formula is still applicable [45]. Therefore, we first

FIG. 4. Phase diagram of Be. The shaded area indicates the
uncertainty of our predicted hcp/bcc boundary. The melting
line is adopted from Robert et al. [24]. The measured hcp/bcc
phase boundary (solid line [21]) and the experimental point
for bcc Be (opened square) [20] are shown for comparison.
The insert summarizes the phase diagram of Be as predicted
by previous theoretical studies: hcp/bcc1 and the pocket at
relative low pressure zone [24], and hcp/bcc2 [19].

calculate the vibrational entropy [29, 31],

Svib = kB
∑

qs

[(nqs + 1) ln(nqs + 1)− nqs lnnqs], (3)

with nqs = [exp(h̄ω̃q,s/kBT )−1]−1, and obtain the total
free energy as:

F (V, T ) = F (V, T0)−
∫ T

T0

S(T ′)dT ′. (4)

where T0 is 1,000 K, S is the total entropy including
both vibrational and electronic contributions (See the
Supplementary material for more details). Our analy-
sis of phonon quasiparticles demonstrates that they are
well defined for both phases for T ≥ 1, 000 K, there-
fore the choice of T0. F (V, T0) = E(V, T0) + T0S(V, T0),
where E(V, T0) is the internal energy obtained from the
MD simulation. Fig. 3(a) displays the calculated free en-
ergies for both bcc and hcp phases. It is seen that at
T ≥ 1, 200 K, Vbcc > Vhcp, and consistently, the common
tangent to these curves starts to have negative slope, in-
dicating a transition from hcp to bcc at positive pressure.
We note that the volumetric variations of both phases
also provide clues to understand the predicted hcp/bcc
transition at very high P (e.g., 400 GPa) [23–25]. More
details of the variation of Vbcc and Vhcp is shown in Fig. S6
the Supplementary material.
It is more convenient to convert F (V, T ) intoG(P, T ) =

F (V, T ) + P (V, T )V to obtain the phase boundary (see
the Supplementary material for details). Fig. 3(b) dis-
plays G(P, T ) for both bcc and hcp phases. At each
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P, the intersection of Gbcc and Ghcp gives the hcp/bcc
transition temperature. The resulting hcp → bcc
phase boundary shown in Fig. 4 together with the pre-
dicted/measured melting line, reveal several important
aspects: (i) bcc Be is stable only when T approaches
the melting point (TM ∼ 1550 K at ambient pressure),
and the hcp → bcc phase transition occurs only in a
narrow pressure range of 0 < P < 11 ± 2 GPa. The
uncertainty in the transition pressure can be understood
from the uncertainties of calculated free energy. From
the five parallel replica of BOMD simulations, five differ-
ent renormalized phonon frequencies ω̃q,s are obtained,
enabling the estimation of uncertainty of ω̃q,s and thus
the uncertainty in the free energy, ∆Fvib. For example,
∆Fvib ≈ 3.5 meV/atom in bcc Be at 2,000 K with a
volume of V = 7.81Å3/atom. The non-negligible ∆Fvib

for both hcp and bcc phases brings out an uncertainty
in hcp/bcc phase boundary. At P = 11 GPa, this un-
certainty is about ±2 GPa. A detailed analysis of the
phase boundary uncertainty is shown in the Supplemen-
tary material. We indicate that the obtained transition
pressure range within uncertainty is consistent with re-
cent experimental measurements [12, 14–18]. For ex-
ample, Lazicki et al. [12] inspected the structure of Be
for high pressure P = 205 GPa at temperature up to
4, 000 K, and for low pressure down to P = 8 GPa at
temperature up to 1, 225 K and found no sign of bcc Be.
Our results are also agreement with earlier experiment
where bcc Be was observed at T > 1500 K [20] at am-
bient pressure. Here it is worth noting that this mea-
surement [20] might not be of sufficient accuracy due to
the impurities contained in the samples. (ii) The hcp/bcc
phase boundary has a positive Clapeyron slope of 41± 4
K/GPa, as recently suggested [12]. Besides, our pre-
dicted Clapeyron slope is close to the experimental value
(43 ± 7 K/GPa) reported by Abey [21]. We note that
Abey indicated that the hcp/bcc boundary disappears at
a triple point P = 2.5 GPa, quite different from out
prediction (11 ± 2 GPa). The main reason is that our
predicted hcp/bcc transition temperature is lower than
Abey’s while the melting line predicted by Robert et al.
is higher than Abey’s. (iii) Our prediction for the bcc
stability field does not look like a pocket, as recently
suggested, but it does overlap with the PT range of that
pocket [24] (see Fig. 4).

In summary, using the concept of phonon quasiparti-
cle, we have investigated the hcp → bcc phase boundary
of Be. We find that bcc Be is stabilized at low pressures
and high temperatures by anharmonic effects. For hcp
Be, anharmonic effects on phonon properties are also sig-
nificant. Using anharmonic phonon dispersions, we eval-
uated the free energies of both phases and showed that
the bcc phase emerges as a pre-melting phenomenon at
relatively low pressures. Our results for the hcp → bcc
phase boundary are consistent with most experimental
observations [12, 14–18, 20, 21] in all important aspects.
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