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Abstract 
 
 

We report structural transformation of six-fold vortex domains into two-, four- and 

eight-fold vortices via a different type of topological defect in hexagonal manganites. 

Combining high-resolution electron microscopy and Landau-theory based numerical 

simulations, we investigate the remarkable atomic arrangement and the intertwined 

relationship between the vortex structures and the topological defects. The roles of 

their displacement field, formation temperature and nucleation sites are revealed. All 

conceivable vortices in the system are topologically classified using homotopy group 

theory and their origins are identified. 
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Topological structures, emerging near spontaneous symmetry-breaking transitions, 
are ubiquitously observed in wide branches of science.[1-6] In condensed matter, 
topologically protected defects can be promising candidates for information storage 
technology. Skyrmions, multiferroic vortices, domain walls, dislocations, and 
disclinations are examples, where emergent properties and behaviors have been 
reported.[7-12] Investigation of these stable configurations is of great interest due to 
their fascinating underlying physics responsible for striking geometric patterns found 
in order parameter (OP) field.[13] Understanding topological structures is crucial to 
the prediction of behavior and functionalities emerging from these topological 
defects.[14,15] However, to date, the interactions among topological defects have 
rarely been studied, largely due to the difficulties in experimental observation and 
validation. Understanding the interactions between topological defects might provide 
a new route to achieve programmable manipulation and control to yield emergent 
functionality. 

In multiferroic hexagonal manganites RMnO3 (R = rare-earth), the crystal structure 
adopts centrosymmetric P63/mmc (D6h) at high temperature. A structural transition 
occurs at temperature Ts, which lowers the symmetry to P63cm (C6v) mainly by the 
condensation of the K3 phonon mode. This process leads to the trimerized tilting of 
MnO5 bipyramids and corrugation of intercalated R layers while maintaining the 
six-fold symmetry (Fig. 1(a)). The condensation yields six possible azimuthal angles 
(φ) of the bipyramid tilting at an interval of π/3. Each value of φ is accompanied by a 
distinct corrugated configuration in R layers, in which two thirds of R atoms shift up 
along the c axis and the rest shift down, as summarized in Fig. 1(b).[16-18] Previous 
theoretical work suggests that the continuous symmetry of OP space at 
high-temperature gives rise to the formation of vortex cores, while the discrete Z6 
symmetry at low temperature leads to the emergence of six bounded domain walls 
surrounding each vortex core.[19-22] With continuous symmetry of the degeneracy 
OP space, φ varies continuously around the cores. At low temperature, φ falls into one 
of the six preferred values with equal probability, and Z6 symmetry becomes 
dominant in the system.[19] This process results in the emergence of six 
crystallographically preferred domains denoted as α+, β-, γ+, α-, β+, γ- or α+, γ-, β+, α-, 
γ+, β- (known as vortex and anti-vortex) in sequence around the core.[16] These 
six-fold vortices are topologically protected and extremely stable under thermal 
perturbation and external biasing.[22-24] The distributions and connections of 
(anti)vortex cores have been analyzed by graph theory.[25,26] However, with the help 
of dislocations, the domain sequences around the vortex cores can be changed. Here, 
we report the first experimental observations of non-six-fold vortex cores in RMnO3 

using advanced electron microscopy to reveal their formation origin at atomic-scale. 
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The coupling mechanisms are studied by numerical simulations based on Landau 
theory, and vortices are topologically classified via homotopy group theory. 

 YMnO3 single crystals were grown by floating zone method. Electron microscopy 
work was carried out at Brookhaven National Lab using the JEOL ARM 200CF 
microscope equipped with two aberration correctors achieving a point resolution of 
0.08 nm. For HAADF (high-angle annular-dark-field) imaging, a convergent angle of 
21.2 mrad and a collection angle of 67-275 mrad were used. To reduce noise, Wiener 
filter was used for some HAADF images.  

Figure 1(c) illustrates a mesoscale composite of dark-field images of hexagonal 
YMnO3, showing the coexistence of various 2-, 4-, 6- and 8-fold vortices (marked by 
red circles). The first-ever-observed eight-fold (anti)vortex is highlighted with the red 
rectangle. Figure 1(d) is the schematic of domain configurations derived from Fig. 
1(c). Careful examination indicates the existence of partial edge dislocations (PEDs) 
near the vortex cores. In the floating zone method, a dramatic change in sample 
temperature during crystal growth might introduce PEDs. 

Atomically resolved eight-fold and four-fold vortex structures are shown in Figs. 
2(a) and (b).[27] In Fig. 2(a), domains with the same polarization direction and 
corrugation state are present in one vortex configuration (two α-, β- and γ+ domains in 
this case; energetically unstable in traditional six-fold vortices), can be stabilized by 
PEDs. Similar labeling was applied to other types of non-six fold vortices, including 
the four-fold vortex shown in Fig. 2(b). More analyses about the configurations of 
domain boundaries are also provided.[27] To map the associated strain field of the 
PEDs of the eight- and four-fold vortex cores, we used geometric phase analyses 
(GPA),[35] and the strain field of εxx (the x axis is [120] direction) around the PEDs in 
Figs. 2(a) and (b) were constructed from the atomic images. Clearly, the non-uniform 
displacement field near the vortex centers plays a significant role in altering the 
corrugated configuration of the vortex structure. The corresponding mesoscale 
dark-field images that possess dissimilar contrast for oppositely polarized ferroelectric 
domains due to the breaking of Friedel’s law, are also included.[36] Careful atomic 
image analysis suggests that the PED possesses a Burgers vector of 1/3[120]. To 
avoid the energetically unfavorable configurations due to the presence of PEDs, the 
original 6-fold winding sequence α-→β+→γ-→α+→β-→γ+ is transformed into a 4-fold 
winding α-→β+→γ-→β-→γ+, and a four-fold domain is formed (Fig. 2(b)). All our 
experimentally observed non-six-fold vortices are summarized in Figs. 2(c)-(g), along 
with other three predicted configurations (Figs. 2(h)-(j)).  

 In RMnO3, the formation process of six-fold vortices can be characterized by the 
variation of a two-component order-parameter field: tilting amplitude of MnO5 
bipyramids Q, and azimuthal angle ϕ.[19,22,37,38] The degeneracy OP space is 
composed of six distinct points at low temperature (Fig. 3(a)), and expands to the 
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continuous circle at a temperature slightly below Ts. The radius of this circle is 
proportional to the value of Q, so the circle shrinks into a single point when T ≥ Ts 
(Q = 0).[22] However, because of the additional structural displacement field induced 
by PEDs, these two components are not sufficient for depicting the domain patterns. 
We thus introduce another scalar order parameter θ for describing the x-component of 
the displacement field.[27] This parameter reflects the geometric phase around 
dislocations and is directly related to the atomic displacements of R atoms.[39-41] 
The distribution of θ around an edge dislocation with b = 1 and υ = 0.3 is shown in 
Fig. 3(b): θ increases continuously from 0 to 2π along any clockwise 
circular-trajectory whose starting and ending point are on a dividing line (indicated in 
Fig. 3(b)) which is attached to the dislocation core. Considering this dislocation 
appears in a mono-domain (φ = 0), the “up-down-down” corrugated configuration 
above the dividing line abruptly switches into “down-down-up” below the line. The 
mismatch of corrugated configurations across the dividing line indicates that this line 
acts like an anti-phase domain wall which is not interlocked with ferroelectric 
boundaries. Since the dislocation is not perfect (for perfect case, b = 3n, n is an 
arbitrary integer), it is always bounded by such a line.[42,43] Thus, the corrugated 
configurations can be modulated by θ, and the OP space for RMnO3 in which 
dislocations exist can be described by the surface of the cylinder (Fig. 3(c)). By 
topological transformation of this cylinder, a torus-like OP space V can be obtained 
(Fig. 3(d)). Hence, any closed loop in the system characterized by (Q, φ, θ) field can 
be precisely mapped into a continuous trajectory in V. More atomic models for 2-, 4- 
8-fold vortex core arrangements are provided.[27] Both experimental results and 
atomic models show that the corrugated configurations do not change significantly 
across dividing lines, because the lattice jump induced by dislocations is compensated 
by the changes of corrugated configuration at domain walls. 
  According to the homotopy group theory, for such a torus-like degeneracy space, 
all vortex configurations shown in Figs. 2(c)-(g) can be classified by elements (m, n) 
of the fundamental homotopy group π1(R) = Z × Z. [4,44,45] This homotopy group is 
different from the one presented in Ref. 19, which due to the expansion of OP space 
from one-dimensional circle to torus, under the effect of PEDs. Considering a 
clockwise loop surrounding the vortex core and its image trajectory in the OP space, 
the absolute value of integer m or n is the net number of times that the smaller or 
larger hole in the torus is circumnavigated by the trajectory, respectively. Values of m 
and n are positive when the circumnavigation directions are along the arrows 
indicated in Fig. 3(d), and negative when opposite the arrows. Based on this definition, 
n equals the Burgers vector b of the dislocation appearing in the core (for convenience, 
we treat two adjacent PEDs with b =1 as one PED with b =2). All vortex 
configurations shown in Fig. 2 can be classified accordingly (see caption of Fig. 2). 
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Generally, defects with lower winding numbers (i.e. smaller |m| and |n|) are 
energetically preferred. It is also interesting to note that the number of ferroelectric 

domain walls bounded with a vortex core equals to 6 2m n⋅ − ⋅ .[27] Thus, a vortex 

core in our system should always be surrounded by an even number of domain walls. 
  To clarify the vortex-forming mechanism, we use the Landau phenomenological 

model for numerical simulations.[27] The newly defined angle parameter (φ θ/3)+  

ensures that the gradient energy density is continuous within domains, and dramatic 
variations take place only at ferroelectric domain walls and vortex cores. Based on 
this model, the annealing process can be simulated by Monte Carlo method.[22] 
Vortex configurations of Figs. 2(c)-(j) after annealing are shown in Figs. 4(a)-(h). The 
temperature at which dislocations form Td plays an important role in determining 
different classes of vortices in these simulations. 

When dislocations form above structural phase transition point Ts, classes of 
vortices labeled by 0 × (±1) and 0 × (±2) are those most frequently observed (Figs. 
4(a) and 4(e)), and (±1) × (±1), (±1) × ( 1), (±1) × (±2), and (±1) × ( 2) types can be 
occasionally observed (Figs. 4(b)-(d) and 4(g)). In this case, the initial distribution of 
φ is arbitrary and θ is given. As temperature decreases from above Ts, the field of φ 
evolves adequately for lowering the local free energy. Thus the vortices with lowest 
energy can be obtained during this process. This suggests that the two-fold vortex 
with one dislocation in the core and four-fold vortex with two dislocations in the core 
are the most energetically preferred. As discussed in Ref. 22, the formation of six-fold 
vortex cores and domain walls in RMnO3 takes place right at the structural phase 
transition temperature. So it is possible that the nucleation site of a vortex (i.e. the 
position around which φ varies from 0 to 2π continuously) is within or near a 
dislocation core region. In such a situation, vortices classified by (±1) × n can be 
formed. Because of a higher gradient of the free energy density induced by a 

dramatically varying (φ θ/3)+  field in the cores, compared with the vortices with m = 

0, the value of Q decreases noticeably in these regions. 

By lowering Td (Td <  Ts), (±1) × n type vortices become common and the 

eight-fold vortices classified by (±2) × (±2) can also be formed (Fig. 4(f)). At T = Td, 
the six-fold vortex pattern has already been formed and the mobility of vortex cores 
and domain walls is much lower than that at high temperatures. To balance the 
increased free energy induced by the displacement field, only relatively high-energy 
vortices form, because the temperature is not sufficiently high to overcome the energy 
barrier blocking the formation of the 0 × n type vortices. So, when one dislocation 
with |b| = 2 happens to locate within a six-fold vortex core at Td, a (±2) × (±2) type 
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vortex forms. In addition, a new type of four-fold vortex classified by (±1) × (±2) is 

also frequently observed when Td <  Ts. Though it belongs to the same class as the 

two-fold vortex shown in Fig. 4(d), the number of domain walls attached to the vortex 
core does not equal |6·m - 2·n|. This is because φ does not vary monotonically around 
the vortex core, and two separated areas have the same value of φ. However, these 
two areas can coalesce if they are near each other, and only two domain walls are left 
after merge. Thus, these two kinds of (±1) × (±2) vortices are topologically identical. 
  It is noteworthy that the core of (±2) × (±2) type vortex is not stable and tends to 
split into two adjacent vortices. For example, a 2 × 2 type vortex core can split into a 
1 × 2 (both four-fold and two-fold vortices are possible) vortex core and a 1 × 0 
(six-fold) vortex core. Increased Td usually leads to greater distance between these 
cores. By comparing Figs. 4(i) and (j), it is obvious that the free energy density of the 

un-split eight-fold vortex core obtained at Td =  Ts is higher than the energies of 

those two split cores obtained at Td =  Ts. This result explains the larger distance 

between two PEDs in eight-fold domain TEM image and why the (±2) × (±2) type 
eight-fold vortex is rarely seen in experiments. 

In conclusion, using aberration-corrected electron microscopy we revealed startling 
detailed atomic configurations of crystallographically forbidden non-six-fold 
ferroelectric domains surrounding the vortex cores in hexagonal YMnO3. The 
unanticipated symmetry breaking was found at both mesoscale (domains) and atomic 
scale (vortex cores) due to the intertwining of two types of topological defects, i.e. 
(anti)vortex cores and partial-edge-dislocations (PEDs). We show that due to the 
interaction of PEDs with surrounding lattice, the initially topologically protected 
6-fold (anti)vortex core structures can be transformed into other configurations. Thus, 
PED, depending on its characteristics, including Burgers vector, formation 
temperature and nucleation sites, can behave as a control knob for regulating vortex 
domain symmetry. The ability to manipulate and control the ferroic orders in RMnO3 
in correlation with spontaneous magnetization, electric polarization, and spontaneous 
strain may provide a platform for exploring emerging physical phenomena with novel 
applications via topological defects. 
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Figures and Captions: 

 

FIG. 1 Non-six-fold vortex domains in hexagonal RMnO3. (a) Atomic unit-cell showing the 
P63cm symmetry with downward polarization. The yellow and orange spheres represent R 
ions at 2a and 4b Wyckoff positions, respectively. (b) Atomic models for three types of 
antiphase domains (α, β, γ) and two types of ferroelectric polarizations (+, -). (c) Composite 
of mesoscale dark-field TEM images with 2-, 4-, 6- and 8-fold vortices, marked by red circles 
and rectangle in YMnO3. (d) The corresponding schematic diagram from (c). 
 

 
FIG. 2 Atomic images and schematic diagrams of non-six-fold vortices. (a)-(b) High 
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resolution HAADF-STEM images of eight-fold antivortex (a) and four-fold vortex (b) 
structures viewed along the [100] axis in YMnO3. The bright and less-bright atoms are Y and 
Mn ions, respectively. The white horizontal lines with tick marks in (a) and (b) are reference 
rulers to assist in identifying the translation relationship across the domain walls (small green 
and red dashed rectangles represent the unit-cell with downward or upward polarization). 
Low magnification dark-field images and strain maps, where yellow, red, green and blue 

represent the εxx values of +8%, +4%, -4% and -8%, respectively, of the core areas are also 
included. The α, β and γ is colored in green, red and blue, respectively. The red, blue solid 
squares and yellow dotted rectangle are magnified.[27] (c)-(j) Schematics of eight possible 
non-six-fold vortices. The first five (c)-(g) are experimentally observed. AV: antivortex, V: 
vortex. Vortices shown in (a) and (b) can be topologically classified as (-2) × (-2) and 0 × (-2), 
and (c)-(j) can be classified as (-1) × (-2), 0 × (-1), (-1) × (-1), 0 ×(-2), (-2) × (-2), (-1) × (-2), 
1 × (-1) and 1 × (-2), respectively. The horizontal lines in (a)-(j) are the dividing line for order 
parameter θ. 
 

 

FIG. 3 (a) The order parameter (OP) space of a dislocation-free system. The six black points 
represent six degenerate states with Z6 symmetry at low temperatures. The corresponding 
corrugated configurations of R atoms are also shown. Degeneracy space expands to the circle 
with continuous U(1) symmetry as temperature rises. The radius of this circle is proportional 
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to Q. (b) A schematic shows the atomic structure around an edge dislocation with b = 1 in a 

mono-domain. The field of OP θ is represented by the color legend. The dividing line (doted 
white line) indicates the position where θ discontinues. (c) The OP space of the RMnO3 
system in which dislocations (vertical lines) exist. The value of θ varies from 0 to 2π along 
the z axis. (d) A torus-like OP space obtained by transforming the cylinder shown in (c): the 

two ends of this cylinder can be equivalent by twisting the cylinder (the α+ point on the upper 
end aligns with the lower one along the z axis). With fixed θ, the variation of φ from 0 to 2π 
corresponds to a loop passing once through the smaller hole in the torus (the black circle). 
Similarly, as θ varies from 0 to 2π with φ = 0, its corresponding trajectory is the yellow line 
on the torus. 
 

 
FIG. 4 Numerical simulations based on the Landau free energy model. (a)-(h) Coexistence of 
six-fold vortices and eight other types of dislocation-induced vortices, showing the tilting 
amplitude Q of the OP field around the vortex cores. The yellow arrows indicate the position 
of dislocations. Corresponding Burgers vectors b and fundamental homotopy group elements 

[m × n] are given at the bottom of each figure. Since the value of Q is slightly smaller at 
domain walls than within domains, the bright-red lines indicate the position of domain walls. 
Because of the high gradient free energy density in some types of vortex cores (b, c, d, f, g, 
and h), Q decreases dramatically within these cores, which appear as yellow/green spots in 
these figures. By contrast, Q does not obviously decrease within vortex cores where the 
density is relative low (a, e). Two spots are observed in (f) because the core is not stable and 
tends to split into two sub-cores. The color legend of Q is shown on the right with units of Å. 
(i) and (j) show the free-energy-density distributions around two 2 × 2 type eight-fold vortex 
cores obtained at two different dislocation formation temperatures Td. The fission of vortex 
core contributes to a reduction of the local free energy. Corresponding distributions of Q are 
given at the top right. The color legend of free energy density is shown on the right with unit 
of eV. 
 


