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Spontaneous emission of atoms in free space is modified by the presence of other atoms in close
vicinity inducing collective super- and sub-radiance. For two nearby atoms with a single decay
channel the entangled antisymmetric superposition state of the two single excited states will not
decay spontaneously. No such excited two-atom dark state exists, if the excited state has two
independent optical decay channels of different frequencies or polarizations. However, we show that
for an excited atomic state with N−1 independent spontaneous decay channels one can find a highly
entangled N -particle dark state, which completely decouples from the vacuum radiation field. It
does not decay spontaneously, nor will it absorb resonant laser light. Mathematically, we see that
this state is the only such state orthogonal to the subspace spanned by the atomic ground states.
Moreover, by means of generic numerical examples we demonstrate that the subradiant behavior
largely survives at finite atomic distances including dipole-dipole interactions.

PACS numbers: 42.50.Pq,42.50.Ct,42.50.Wk,07.60.Ly

Spontaneous decay of an excited atomic state towards
lower lying states via optical photon emission is a strik-
ing consequence of the quantum nature of the radiation
field [1]. Introduced even before Einstein, the sponta-

neous emission rate Γ = ω3µ2

3ε0π~c3 , now called Einstein
A-coefficient, is proportional to the squared transition
dipole moment µ2 between upper and lower atomic state
and the third power of the transition frequency ω [2].

For several particles in close vicinity the emission pro-
cess is not independent but enhanced or reduced collec-
tively, depending on the emitters geometry [3, 4]. These
superradiant and subradiant collective states, where a
single excitation is distributed over many particles, are
entangled states [5, 6]. Although a recent classical cou-
pled dipole model leads to subradiance-like phenomena as
well [7], the most superradiant and the perfect dark states
for two two-level quantum emitters with states (|g〉 , |e〉)
are the maximally entangled symmetric and antisymmet-
ric superposition states,

|ψ±〉 = (|eg〉 ± |ge〉)/
√

2. (1)

While superradiance on a chosen transition persists
when the atom possesses more than one decay channel,
no completely dark state for two atoms with several decay
paths from an excited state |e〉 to a couple of lower lying
states |gi〉, as depicted in Fig. 1, is known. Since there are
alternative possibilities for decay in most atomic systems,
observing subradiance experimentally proves much more
difficult than seeing superradiance as all decay channels
need to be blocked [8–11].

In this paper, we introduce a generalized class of dark
or subradiant states for atoms with several independent
transitions. As a key result of this work we find that
for systems of N particles highly entangled multi-partite
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states, where N − 1 independent decay channels are sup-
pressed, exist. For these states the total dipole moments
on all N − 1 transitions vanish simultaneously and, at
least in principle, any optical excitation in this state can
be stored indefinitely. Note that subradiance of multi-
level atoms has been studied before but decay was largely
limited to a single degenerate channel for all atoms and
transitions [10].

After having introduced our model and the general-
ized unique multi-partite entangled dark states, we will
discuss the relation between subradiance and their spe-
cial entanglement properties as well as possible quan-
tum information theoretical procedures to prepare them.
Their mathematical properties are detailed in the supple-
ment [12]. In the final part of the paper we study subra-
diance for some generic examples of three-level Λ− atoms
including dipole-dipole coupling, where population of the
dark state can be accumulated via decay from multiply
excited states.

Interestingly, a related phenomenon appears in V-type
atoms with two excited and one ground state, where a
single ground state atom can prevent decay of several ex-
citations as exhibited in the Supplementary Material [12].
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FIG. 1. Level scheme of an atom with several independent
decay channels of different polarization or frequency.

Model: Let us assume a collection of N identical N -
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level emitters with a set of N − 1 low energy eigenstates
|gi〉, where i ∈ {1, . . . , N}, which are dipole coupled to a
higher energy state |e〉 separated by the excitation ener-
gies ~ωi (see Fig. 1). The atomic center of mass motion is
treated classically with fixed positions ri within a cubic
wavelength. For each atom i and transition j we define
individual Pauli ladder operators σi±j describing transi-

tions between the i-th atom’s excited state |e〉i and its j
lower energy states |gj〉i, respectively.

The coupling of each atomic transition, j, of atom i, to
the electromagnetic vacuum leads to an individual free
space decay rate Γij . As all atoms are coupled to the
same vacuum modes, these decay rates are modified by
pairwise interactions with neighboring atomic transitions
k, l, which upon elimination of the field modes can be de-
scribed by mutual decay rates Γikjl , with Γiij = Γj [3, 13].
Note, that in addition to the modified decay properties
the collective vacuum coupling induces resonant energy
exchange terms Ωikjl as presented in [3, 4, 13, 14].

As our central interest is the modification of the collec-
tive emission rates, for simplicity, we will assume a highly
symmetric arrangement of the particles, so that all parti-
cles acquire equal energy shifts, i.e. Ωikjj = Ωj , which can
be incorporated into effective transition frequencies [14].
In terms of the operators defined above with the excited
state energy set to zero the dipole coupled atomic Hamil-
tonian is given by

H =
∑
i,j

−ω̄ij σi−j σi+j +
∑
i 6=k

∑
j

Ωikj σ
i+
j σk−j . (2)

The full dynamics of the coupled open system includ-
ing decay is governed by a master equation for the density
matrix ρ of the whole system of N multilevel emitters,

∂ρ

∂t
= i[ρ,H] + L[ρ]. (3)

Following standard quantum optical assumptions and
methods the effective Liouvillian summed over all tran-
sitions and atom pairs reads [14, 15]

L[ρ] =
1

2

∑
i,k,j

Γikj
[
2σi−j ρ σk+

j − σi+j σk−j ρ− ρ σi+j σk−j
]
(4)

While this can be a complex and complicated expres-
sion for a general arrangement [14], in the case of atomic
distances much smaller than the transition wavelength,
all Γikj = Γj become independent of the atomic indexes
(i, k), reducing to a single constant Γj . For simplicity, we
also assume equal decay rates on all transitions Γj = Γ,
i.e. equal dipole moments and Clebsch-Gordon coeffi-
cients [16]. This will hardly be exactly true for any real
atomic configuration (besides J = 0 to J = 1), but it will
not change the essential conclusions below.

Collective atomic dark states: Obviously, any
atomic density matrix ρg involving ground state popu-
lations |gi〉 only is stationary under L in a trivial way
with L [ρg] = 0. Therefore, states ρe featuring atomic

excitations, which will still not decay under L, are much
more interesting.

For the case of two two-level atoms such dark states
are well known and have been confirmed experimentally
decades ago [17]. They are antisymmetric superpositions
as introduced in Eq. (5), i.e., |ψ2

d〉 = |ψ−〉. As a cen-
tral claim of this work we show that this formula can
be generalized to the case of N atoms with N − 1 in-
dependent optical transitions between the upper state
|0〉 = |s0〉 = |e〉 and N − 1 lower states |i〉 = |si〉 = |gi〉
in the form

|ψNd 〉 =
1√
N !

∑
π∈SN

sgn(π)
⊗
i

|sπ(i)〉 , (5)

where the sum runs over all permutations π of N ele-
ments. Using the criterion for pure states to be station-
ary under L given in [18], we show in the Supplementary
Materials [12] that this N -level state of total spin 0 is
the unique stationary state orthogonal to the subspace,
where all particles are in |gi〉 for some i. A symmetric
variant of this state, denoted by |ψNsr 〉, with all positive
signs will be its super-radiant analogue.
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FIG. 2. Upper state population decay of three interacting Λ-
type atoms in an equilateral triangle of size d = 0.08λ � λ,
where Γik

j ≈ 0.95Γj for all particles i, k with i 6= k starting
from the ideal dark state (solid blue line). For comparison,
the dashed black line shows independent atom decay, while
the dotted red line corresponds to a fully symmetric state with
superradiant decay on both transitions. Coherent level shifts
are neglected, i.e. Ωik

j = 0 for all i, k.

The dark state has a zero total dipole moment µj =〈∑
i σ

i
j

〉
= 0 on any transition as a consequence of its

symmetry. This implies strong entanglement as discussed
in more detail below. Indeed, those states are a spe-
cial case of complex entangled states, many of whose
mathematical properties have been considered before (see
e.g. [19]).

For three Λ-atoms one explicitly gets

|ψ3
d〉 =

1√
6
{|eg1g2〉+ |g1g2e〉+ |g2eg1〉

− |eg2g1〉 − |g2g1e〉 − |g1eg2〉},
(6)
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which is within the set of maximally entangled tripartite
states of qutrits [20].

As mentioned before, this state is stationary in the
case of H = 0 and coinciding decay rates, Γikj = Γ (see
also Fig. 3). For more realistic situations, in Fig. 2 we
consider a sub-wavelength equilateral triangular config-
uration with d = 0.08λ. The subradiant decay result-
ing from the evolution governed by the master equation,
Eq. (3), is shown. As the atoms also experience energy
shifts from the resonant dipole-dipole coupling, Ωikj , in
Eq. (2), the dark states in Eq. (5) will, in general, not be
eigenstates of H and dynamic mixing with other states
induces a finite lifetime as for two-level dark states [21].
In this graph, in order to demonstrate the subradiance
effect more clearly, we have set Ωijj = 0.

Note that the subradiant states discussed here are not
the dark states appearing in a two-laser excitation of
Λ-type systems discussed in [22]. There, a particular
superposition of ground states decouples from the laser
excitation for each atom separately and leads to a co-
herent population trapping in the ground state manifold.
The notion of dissipative state preparation [18, 23] has
also been used in [24]. There, it has been shown that
three M -shaped 5-level atoms interacting via three cou-
pled cavities and lasers can be driven into the state |ψ3

d〉,
where, however, only atomic ground states are involved.

As an important consequence of the uniqueness of the
dark state, no such state can exist for a smaller number
of atoms. Therefore, when considering M atoms with
N − 1 independent optical transitions between the up-
per state |e〉 and their N − 1 lower states |gi〉, where the
emitted photons on each transition are distinguishable,
the following picture emerges: for M < N only ground
states are stationary under L. In case M > N , how-
ever, extra stationary states involving excitations can be
found. They are given by tensor products of states that
are stationary for parts of the system and superpositions
of these states. To give a simple example for the case
M = 6 and N = 3 the states

|ψ〉 = (α |ψ3
d〉 ⊗ |ψ3

d〉+ β |gigj〉 ⊗ |ψ3
d〉 ⊗ |gk〉)/

√
2 (7)

are dark for any α, β ∈ C.
Entanglement properties of dark states: Impor-

tant properties of the dark states |ψNd 〉 will shortly be re-
capitulated here as they provide important insights into
the physical origin of subradiance as well as possibilities
to prepare them. It has been shown via the construction
of generalized Bell inequalities for any N that there exists
no local hidden variable model describing their quantum
predictions [19]. Hence |ψNd 〉 has no direct classical ana-
logue. Moreover, it can be used to solve the Byzantine
agreement problem, the N strangers problem, the secret
sharing problem, and the liar detection problem [19, 25].

What makes these states so useful for the above men-
tioned tasks are their very special entanglement proper-
ties [19], which we briefly reiterate here (for more details
see [12]). First, note that the state is contained in the
maximally entangled set, which is a generalization of the

bipartite maximally entangled state [20]. The bipartite
entanglement shared between any of the particles and the
rest of the particles is maximal as it is for pairs of two-
level dark states. This property implies that the reduced
density matrix for any particle, j obtained by the partial
trace over all other particles is proportional to identity.
Hence we see that each particle contains no individual
information and, in this sense, subradiance is a purely
non-local, non-classical phenomenon.

An important property of |ψNd 〉 is the fact that for all
invertible operators S, |ψNd 〉 ∝ S⊗N |ψNd 〉. This symme-
try has several important consequences. If one particle
is measured in any basis and the measurement outcome
and chosen basis are announced, the other N−1 particles
can be transformed to the state |ψN−1d 〉 deterministically
by performing local unitary operations only [26]. This

implies that one can generate |ψNd 〉 from |ψN−1d 〉 with an
extra atom, as will be explained below.

Let us note here, that the geometric measure of en-
tanglement [27] can be computed easily and one obtains

that Eg(|ψNd 〉) = 1−max|a1〉,...,|aN 〉
∣∣〈a1, . . . , aN |ψNd 〉∣∣2 =

1 − 1
N ! [12, 28]. Furthermore, it can be shown that the

entanglement contained in the state is persistent under
particle loss [12, 29].
Preparing collective dark states: Let us now de-

rive two quantum information theoretical schemes to pre-
pare the state |ψ3

d〉 deterministically. Below, we will
present dissipative schemes to prepare them probabilis-
tically. They can be generalized to preparing |ψNd 〉 for
N > 3.

In both methods we initially prepare the state |ψ−〉 =

(|01〉 − |10〉)/
√

2 for two of the particles denoted as par-
ticles 1 and 2, which can be achieved by applying a
CNOT to the two particles in the initial product state
(|0〉 − |1〉)/

√
2⊗ |1〉.

In the first method we then prepare particle
3 in the state |2〉 and apply the 3-qutrit gate
e−i2π/9(X⊗X⊗X+h.c.), where X = |1〉 〈0|+ |2〉 〈1|+ |0〉 〈2|,
in order to obtain the state |ψ3

d〉 up to local phase gates.
This preparation procedure can be verified easily realiz-
ing that X3 = 1l.

Alternatively, we prepare particle 3 in |+〉 = (|0〉+|1〉+
|2〉)/

√
3 and apply the two-qutrit unitary U = |0〉 〈0| ⊗

X + |1〉 〈1| ⊗X2 + |2〉 〈2| ⊗ 1l on the particle pairs (3, 1)
and (3,2) in order to obtain |ψ3

d〉.
Let us point out, that given |ψN−1d 〉 for N − 1 parti-

cles, the state |ψNd 〉 can be obtained by preparing par-

ticle N in 1/
√
N
∑N−1
i=0 (−1)(N−1)(1+i) |i〉 and applying

U =
∑N−1
i=0 |i〉 〈i| ⊗ Xi+1, where X = |0〉 〈N − 1| +∑N−2

i=0 |i+ 1〉 〈i|, to all particle pairs (N, j). Hence, |ψNd 〉
can be prepared recursively.

In a similar manner the state |ψNsr 〉 can be prepared by
using |ψ+〉 instead of |ψ−〉 as the initial state of particles
1 and 2 and omitting the minus sign in the initial state
of particle N . However, the properties of |ψNsr 〉 are very
different from |ψNd 〉, as e.g. |ψNsr 〉 has much less symme-
tries. Another difference can be found in the geometric
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measure of entanglement Eg(|ψNsr 〉) = 1−N !/NN [28, 30],
which is much smaller than Eg for the dark state.

Dissipative generation of dark states: As collec-
tive excitation and emission is inherently non-local and
built into our model automatically, it will not only per-
turb a perfect dark state but one can achieve preparation
via collective decay. In the following we will exhibit such
collective dynamics of the system for various configura-
tions.

Again, we consider the case of three atoms with two
decay channels, i.e. three Λ-systems, in a equilateral tri-
angle or, alternatively, an equidistant chain and numeri-
cally solve for the dynamics.
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FIG. 3. Upper state population decay for three closely spaced
Λ-type atoms for different singly excited initial states, where
Γik
j = Γ and we neglect Ωik

j . The solid blue line corresponds

to the dark state |ψ3
d〉, the dotted red line gives the case of the

two atom dark state for optically pumped atoms 1/
√

2(|eg1〉−
|g1e〉) |g1〉 and dashed green refers to an unpolarized product
state 1/

√
2(|eg1〉−|g1e〉) |g2〉 involving all three atomic states.

A simple method to prepare the dark state probabilis-
tically works as follows. We use the surprising fact that
a nearby atom in the final state of a chosen transition
can be utilized to suppress a particular decay channel of
an atomic excitation. To see that, we start from an anti-
symmetric two-atom state |ψ2

d〉 = (|g1, e〉 − |e, g1〉)/
√

2,
which will not decay on the first transition to |g1〉. This
state, however, decays on the second transition towards
(|g1, g2〉 − |g2, g1〉)/

√
2. Now, let us add a third atom in

either of the two ground states.

As shown in Fig. 3, a third atom prepared in |g1〉 will
not prevent decay (dotted red line), while a third atom
in the state |g2〉 partially prevents decay and results in a
finite excited state population probability at long times
(dashed green line). Hence, after some time the system

has either decayed to (|g1, g2, g2〉−|g2, g1, g2〉)/
√

2 or ends
up in the dark state |ψ3

d〉. Thus, preparing two atom dark
states in the presence of other unpolarized ground state
atoms is a key route for a probabilistic preparation of
dark states. In this sense optical pumping as used in
some experiments is counterproductive.
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FIG. 4. Decay of three Λ-type atoms in an equidistant chain of
distance d = λ/4 with non-equal Γik

j starting from the totally
inverted state |eee〉. The solid red line gives the excited state
population per atom, the dotted blue line shows the population
in the ground state subspace and the dashed-dotted black line
gives the dark state |ψ3

d〉 fraction during the decay. For com-
parison the red dashed line exhibits ideal collective decay at
d = 0 with all equal Γikj (Dicke case). Note, that during the
evolution the dark (gray) state, which decays much slower, be-
comes populated partially. Again, we neglect Ωik

j , which would
lead to an oscillatory behavior in the populations.

It is known that in spatially extended systems with
non-uniform radiative coupling coefficients, Γikj , no per-
fect dark state but only long lived subradiant states ex-
ist [31]. This implies that free space spontaneous decay
from a multiply excited state can also sometimes end up
in such a gray state [13] in close analogy to tailored de-
terministic entanglement generation between the ground
states of interacting Λ-atoms [32, 33].

A central question now concerns the extend to which
such a dissipative preparation works for several indepen-
dent decay channels. By construction the ideal dark state
|ψNd 〉 is also decoupled from further symmetric laser ex-
citation. Hence, the state is dark in absorption as well,
similar to coherent population trapping in the ground
state manifold [22].

For another conceptually simple approach to preparing
the dark state we start from a totally inverted state |eee〉
for three atoms placed at a suitable finite distance, where
the off diagonal elements of the matrix Γikj acquire neg-
ative values. As the dark component decays the slowest
it should survive at the end. In Fig. 4 we demonstrate
this mechanism for a three qutrit chain with a distance of
d = λ/4. A comparison of the excited state fraction pop-
ulation for a finite sized chain (red line) with the ideal
collective decay (dashed red line) shows a slowdown of
the decay at late times, where indeed a small fraction of
the population ends up in the dark state (black line). As
the dark state has only little overlap with any product
state, this fraction is small but can become relatively im-
portant at late times. Since |ψ3

d〉 acquires a finite lifetime
for finite distances, this fraction eventually decays as well
but at a much slower rate.
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Conclusions: As our key result we show that the con-
cept of dark or subradiant states can be generalized to
multiple decay channels, if one includes one more parti-
cle than decay channels. The corresponding dark states
are completely anti-symmetric, highly entangled multi-
partite states with a plethora of quantum information
applications. They can be prepared by a sequence of
bipartite or tripartite gates or via tailored spontaneous
emission from multiply excited states in optical lattices.
A generalization to multiple excitations and several ex-
cited states as well as including the motional atomic de-

grees of freedom can be envisaged.
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Phys. Rev. Lett. 107, 240502 (2011).

[35] R. F. Werner, Phys. Rev. A 40, 4277 (1989).
[36] M. Horodecki, P. Horodecki, and R. Horodecki, Phys.

Lett. A 223, 1 (1996).
[37] B. M. Terhal, Phys. Lett. A 271, 319 (2000).
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