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10Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE),

Universités Paris 6 et Paris 7, CNRS-IN2P3, Paris, France
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We present direct detection constraints on the absorption of hidden-photon dark matter with
particle masses in the range 1.2–30 eV c−2 with the DAMIC experiment at SNOLAB. Under the
assumption that the local dark matter is entirely constituted of hidden photons, the sensitivity
to the kinetic mixing parameter κ is competitive with constraints from solar emission, reaching a
minimum value of 2.2×10−14 at 17 eV c−2. These results are the most stringent direct detection
constraints on hidden-photon dark matter in the galactic halo with masses 3–12 eV c−2 and the
first demonstration of direct experimental sensitivity to ionization signals <12 eV from dark matter
interactions.

The DAMIC (Dark Matter in CCDs) experiment at
SNOLAB [1] employs the bulk silicon of scientific-grade
charge-coupled devices (CCDs) as a target for ionization
signals produced by interactions of particle dark matter
from the galactic halo. In this letter, we report on a
search for hidden photons, massive vector bosons that
have been proposed as candidates to explain the origin
of the dark matter in the Universe [2].

Similarly to ordinary photons, hidden photons can be
absorbed by electrons in the bulk of a silicon device
and lead to an ionization signal. For the case of non-
relativistic hidden photons in the galactic halo, which re-
lease their rest energy in the target, free charge carriers
may be produced for rest energies above the band gap of
silicon (1.2 eV), with a larger number of charge carriers
produced with increasing hidden photon mass (mV ). In
this analysis, we consider ionization signals in the range
1–11 e−, probing the absorption of hidden photons with
masses 1.2–30 eV c−2.

The absorption cross section for hidden photons [3–5]
is determined by the kinetic mixing κ between the field
strength tensors of electromagnetism and its “hidden”
counterpart [6]. When in-medium dispersion effects are

considered, an effective mixing parameter κeff can be
defined such that the absorption cross section for a non-
relativistic hidden photon in the medium, σV (mV ), is
related to the photoelectric cross section for a photon
with energy mV c

2, σγ(mV c
2), by

σV (mV )v = κ2effσγ(mV c
2)c,

where v is the speed of the hidden photon in the labo-
ratory frame and c is the speed of light. The effective
kinetic mixing can be expressed as

κ2eff =
κ2m4

V

(m2
V − Re[Π(mV c2)])2 + (Im[Π(mV c2)])2

,

where Π(mV c
2) is the polarization tensor of the medium

evaluated at a photon energy equal to the hidden photon
rest energy.

Hence, for a detector target located within the dark
matter halo the absorption rate of hidden photons would
be

Γ =
ρDM
mV

κ2effσγ(mV c
2)c, (1)

where ρDM=0.3 GeV c−2 cm−3 is the local density of dark
matter. Of particular relevance is the lack of dependence
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FIG. 1. Cross-sectional diagram of a pixel of a DAMIC CCD.
A hidden photon is absorbed by a valence electron in the
bulk silicon. The rest energy of the hidden photon (mV c

2) is
released into an energetic photoelectron. The photoelectron
loses its kinetic energy by ionization, generating secondary
charge carriers in the silicon. The charge carriers are then
drifted across the substrate by the applied electric field and
held below the gates until the device is read out. Adapted
from Ref. [8].

of Γ on v, the result being insensitive to the details of the
hidden photon velocity distribution in the dark matter
halo. Thus, unlike searches for weakly-interacting mas-
sive particles (WIMPs) by elastic scattering off nuclei, no
annual modulation is expected in the potential signal.

The search for hidden photons was performed with
6.25 d of data acquired in January 2016 with a 4k×4k-
pixel CCD (5.8 g in mass) deployed as part of the R&D
program of the DAMIC experiment. This device exhib-
ited the lowest leakage current of four CCDs installed in
the DAMIC copper box when cooled to 105±5 K inside
a copper vacuum vessel (∼10−6 mbar). The setup was
shielded on all sides by at least 18 cm of lead and 42 cm
of polyethylene to stop background radiation from envi-
ronmental γ rays and neutrons, respectively. Details of
the DAMIC infrastructure at SNOLAB can be found in
Refs. [1, 7].

A CCD pixel consists of a three-phase polysilicon gate
structure with a buried p-channel (Figure 1). The pixel
size is 15× 15µm2 and the bulk of the device is high-
resistivity (10–20 kΩ cm) n-type silicon with a substrate
thickness of 675µm. The high resistivity of the sil-
icon allows for a low donor density in the substrate
(∼1011 cm−3), which leads to fully depleted operation at
a substrate bias of 40 V. Charge produced in the bulk by
ionization (e.g., from the absorption of a hidden photon,
as in Figure 1) is drifted along the direction of the elec-
tric field across the substrate. Because of thermal mo-
tion, the charge carriers diffuse transversely with respect
to the electric field direction as they are drifted, with a
lateral variance that is proportional to the carrier tran-
sit time. The charge is collected and held near the p-n

junction, less than 1µm below the gates, until the device
is read out. During readout, the charge is transferred in
the y direction from pixel to pixel along each column by
appropriate clocking of the three-phase gates (“parallel
clocks”), while higher frequency clocks (“serial clocks”)
move the charge of the last row (the “serial register”)
in the x direction to the primary CCD charge-to-voltage
amplifier, the output node. A precise measurement of
the charge is then performed by a correlated double-
sampling circuit [9]. DAMIC CCDs have a second out-
put node on the other end of the serial register in which
charge is not deposited, offering a measurement of zero
charge, i.e., of noise. The inefficiency of charge transfer
from pixel to pixel is as low as 10−6 [8] and the readout
noise in the charge measurement is ∼2 e− [1]. The image
is reconstructed from the order in which the pixels are
read out, and contains a two-dimensional stacked history
(projected on the x-y plane) of all ionization produced
throughout the exposure. The data used for this analy-
sis was acquired with a 1×100 binning, where each pixel
in the serial register collects the charge of 100 pixels in
the corresponding column before the charge is moved in
the x direction and the serial register is read out. In this
acquisition mode, each pixel in the image is effectively
15× 1500µm2 in size. Since readout noise is introduced
each time the charge is measured, a better signal-to-noise
in the measurement of the charge is achieved by binning.
For details on the acquisition modes of DAMIC CCDs
see Ref. [1].

Nine exposures of 0.695 d each were acquired with im-
ages 4622×60 pixels in size. The device was brought into
inversion before every exposure to suppress surface dark
current [9]. The CCD data is contained in a 4116×42-
pixel segment of the image, corresponding to the physical
size of the device, with the remaining regions constitut-
ing the “overscan,” where the CCD was clocked in both x
and y directions beyond its active region to obtain mea-
surements of zero charge with the primary output node.
Images were also acquired with the secondary CCD out-
put node and with the other three CCDs installed in the
DAMIC box. Since the readout of all images is synchro-
nized by the clocking, the noise images by the second
output nodes of all CCDs allow for the identification and
suppression of correlated electronic noise of the detector’s
readout chain.

The output of the CCD readout chain is recorded in
Analog-to-Digital converter Units (ADU) proportional
to the number of charge carriers placed in the CCD’s
output node. The linear constant α relating the pixel
value to the number of charge carriers was calibrated be-
fore deployment with x-ray lines of known energy to be
α=0.0727 e−/ADU. The linearity of the CCD output was
confirmed within ±10% for signals as small as 2 e− using
optical photons [1].

The image processing started with the subtraction of
the pedestal (the constant offset of the pixel values in-
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FIG. 2. Mean of the pixel values in each row over the nine
images, 〈p〉, as a function of row number. The first 42 rows
contain the CCD data, while the remaining 18 rows constitute
the y overscan. The dotted line shows 〈p〉=0, while the solid
line presents the level of leakage charge that corresponds to
λ=4.0 e− mm−2 d−1.

troduced at the time of readout) from every pixel. The
pedestal was estimated independently for each row as
the mean value of the pixels in the x overscan. To ex-
clude a slight pedestal transient at the beginning of every
row, the analysis was limited to the last 2500 columns of
the image, for which the pixel values along rows in the
y overscan were found to be constant within statistical
uncertainty. To remove correlated readout noise, from
every pixel we subtracted a linear combination of the
pixel values in the corresponding four noise images, with
the coefficients determined as to minimize the variance
of the pixel noise. Following this procedure, the noise in
the images was estimated from the pixel values of the y
overscan to be σpix=1.9 e−.

We calculated the median and median absolute devia-
tion (MAD) of every pixel over 114 images from a previ-
ous higher-temperature data set dedicated to background
studies. These quantities were used to construct a mask,
which excludes localized dark current spikes due to de-
fects in the silicon lattice [9]. These were identified as
pixels that either deviate more than 3 MAD from the
median in at least 50% of the images or have a median
or MAD that is an outlier when compared to the distri-
butions of these variables for all pixels. This selection
removed 0.17% of the pixels.

This analysis considered all pixels with values up to
6σpix, including pixels that do not collect any charge
and whose values arise solely from readout noise. Thus,
clusters of contiguous pixels with signal larger than
6σpix=11.4 e− were masked from the image. Pixels that
were less than 4 pixels to the right or less than 200 pixels
to the left of every cluster, i.e., within the 200 subsequent
pixel readouts, were also masked. This requirement re-
jected pixels with stray charge due to CCD charge trans-
fer inefficiencies, which may happen when a high energy
interaction results in a large number of charge carriers
in the serial register. Because of the low event rate from
radioactive backgrounds (∼1 g−1 d−1), only 0.95% of the
pixels were removed by this procedure.

Figure 2 shows the mean value of pixels in each row

over the nine images, 〈p〉, after the image processing and
pixel selection described above. Rows ≥43 correspond
to the y overscan, for which 〈p〉 is consistent with zero.
The first 42 rows of the image contain the CCD data, for
which an offset is clearly visible due to charge collected
by the pixels. Hidden photon absorption would produce
charge uniformly distributed throughout the pixel array.
The higher values of collected charge in rows 30–40 indi-
cate the presence of non-uniform sources of leakage cur-
rent, e.g., optical or near-infrared photons inside the ves-
sel or dark current exacerbated by mechanical stress of
the silicon lattice. The same pattern is more clearly ob-
served in the other CCDs, with higher leakage current,
installed in the DAMIC box, for which the increase is
evident starting at row 22, suggesting that the charge
distribution is spatially uniform only in the bottom-half
of the devices, i.e., rows 1–21.

Thus, we consider rows 1–21 to place upper lim-
its on the possible contribution to the collected charge
from hidden photon absorption. This corresponds to
N=4.68×105 unmasked pixels over the nine images,
equivalent to an exposure of 11.5 g d. The distribution
of pixel values p (Figure 3) can be parametrized as:

f(p) = N

∞∑
n=0

F (n|λ,Γ,mV )Gaus(αp|n− µ0, σpix),

where n is the number of charge carriers collected by a
pixel, F is their relative frequency, which depends on the
leakage current per unit area, λ, and the hidden photon
absorption rate, Γ, and the Gaussian function describes
the pixel white noise with mean n and standard deviation
σpix. An offset, µ0, that could remain because of the
statistical uncertainty in the subtraction of the pedestal
was included in the function.

In the absence of charge from hidden photon absorp-
tion, i.e., for the case of the “null” hypothesis, F reduces
to the contribution from leakage current:

F (n|λ, 0,mV ) = Poisson(n|Eλ), (2)

modeled as a Poisson distribution under the assumption
of uncorrelated production of charge carriers uniformly
distributed across the selected region of the CCD. The
mean leakage charge collected by a pixel is proportional
to the image single pixel exposure of E=0.0156 mm2 d.

To obtain the contribution to F from the charge gen-
erated by hidden photon absorption we rely on Monte
Carlo simulations. For a given hidden photon mass
mV , we simulated a number of interactions drawn
from a Poisson distribution with mean ΓEρN/9, where
ρ =1.57 mg mm−2 is the mass density per unit area of the
CCD. The spatial position of the hidden photon absorp-
tion was uniformly distributed in the selected volume of
the CCD. For each simulated hidden photon absorption,
we generated the number of charge carriers as for the
photoelectric absorption of a photon with energy mV c

2,
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FIG. 3. Distribution of the pixel values, p, considered for this
analysis (markers). The solid line shows the best-fit result
with the null hypothesis, i.e., only pixel white noise and a con-
stant leakage current source across the device. The p-value is
0.78. The dashed (dot-dashed) line shows the result after in-
cluding a fixed contribution from hidden photons with masses
mV =10 eV (25 eV) and an absorption rate of Γ=103 g−1 d−1

(102 g−1 d−1).

using the probability distributions from Ref. [10]. We
then distributed the carriers on the pixel array accord-
ing to the charge diffusion model for the CCD, described
and validated in Ref. [1]. A histogram was made of the
contents of all pixels in the simulated pixel array, and
the simulation was repeated 100 times to obtain a nu-
merical distribution of F (n|0,Γ,mV ). This function was
then convolved with Eq. 2 to obtain F (n|λ,Γ,mV ).

We first performed a likelihood fit to the data with the
null hypothesis, with σpix, λ and µ0 as free parameters.
Two penalty terms were added in the log-likelihood def-
inition to include in the fit the prior knowledge of the
values of σpix and µ0. The value of σpix was constrained
to the result from a fit to the pixels in the y overscan,
while µ0 was constrained within the statistical uncer-
tainty in the pedestal subtraction. The best-fit values
were σpix=1.889±0.002 e−, λ=4.0±0.4 e−mm−2 d−1 and
µ0=0.010±0.005 e− with a p-value of 0.78.

To explore the hidden photon signal, we performed a
scan for values of mV and Γ. For each value of mV , we in-
creased the value of Γ in discrete steps starting from zero.
At every step, the likelihood fit was performed where the
parameters mV and Γ were fixed and σpix, λ and µ0 were
free. The minimum log-likelihood was registered and a
likelihood profile was constructed for every mV as a func-
tion of Γ. There was no statistical significance for a hid-
den photon signal at any mV . The 90% C.L. upper limit
on Γ was thus obtained from the likelihood profile using
a likelihood-ratio test. Figure 4 presents the results as a
function of mV from 1.2 to 30 eV c−2.

Below 5 eV c−2, hidden photon absorptions produce

� � �� �� �� �� ��

�� ��	
���

���

���

���

���

���

�
�

�

�
�
�

�
�

FIG. 4. Upper limits (90% C.L.) on the hidden photon ab-
sorption rate, Γ, as a function of hidden photon mass, mV ,
obtained from the likelihood fit described in the text.

only one charge carrier, leading to a current source that
would be indistinguishable from leakage current, and an
upper limit on the absorption rate at the same level
as the leakage current. At higher mV , the multiplicity
in the number of carriers produced per absorption in-
creases, leading to pixels that collect significantly more
carriers than would be expected from leakage current.
This leads to a longer tail on the right side of the pixel
distribution, and consequently to a stronger upper limit
on Γ. To illustrate this, Figure 3 shows the best-fit results
with fixed parameters mV =10 eV and Γ=103 g−1 d−1,
and mV =25 eV and Γ=102 g−1 d−1.

The absorption rate, Γ, is related to the hidden-photon
kinetic mixing, κ, through κeff according to Eq. 1. We
use this relation to translate the upper limit on Γ for a
given mV to the corresponding upper limit on κ. Fol-
lowing Ref. [4], we compute the polarization tensor using
the complex index of refraction in silicon, estimated at
the detector operating temperature of 105 K by extrap-
olating the values given in Ref. [11] using the empirical
parameterization from Ref. [12]. The results are shown
in Figure 5.

Several sources of systematic uncertainty were inves-
tigated. The largest effect arises from the uncertainty
in the linearity of the CCD output signal, which we es-
timated by varying α by ±10%, resulting in changes in
the upper limit of Γ ranging from 10% for mV<5 eV c−2

up to a factor of 2 for mV =30 eV c−2. We repeated the
analysis for different selected regions of the CCD, con-
sidering rows 1–18 and 1–24, or the last 2200 columns of
the image. This lead to changes in the upper limits of Γ
especially at higher masses, with up to a 50% increase at
mV =30 eV c−2. We confirmed the absence of pixels with
values from 6 to 8σpix, thus the result is insensitive to
the upper bound on the pixel values. Finally, varying the
temperature by ±10 K had a <5% impact on the upper
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FIG. 5. Exclusion plot (90% C.L.) for the hidden-photon ki-
netic mixing, κ, as a function of hidden photon mass, mV ,
from the dark matter search presented in this letter (solid
line). The exclusion limits from other direct searches for
hidden-photon dark matter in the galactic halo with a dish
antenna (thin-dotted line) [13] and with the XENON10 ex-
periment (dashed line) [5] are shown for comparison. A limit
from a direct search with the XENON10 experiment for hid-
den photons radiated by the Sun (dot-dashed line) [5] and
an indirect constraint from the upper limit of the power lost
by the Sun into invisible radiation (thick-dotted line) [14] are
also presented.

limits of κ.
The exclusion limits presented in this letter are the

most stringent direct detection constraints on hidden-
photon dark matter in the galactic halo with masses 3–
12 eV c−2. The sensitivity of the experiment in terms
of the kinetic mixing parameter κ is approaching that of
searches for hidden photon emission by the Sun, offering a
complementary technique for their detection. Continued
identification and mitigation of dark current and light
sources in DAMIC will improve the sensitivity, making
CCDs promising direct probes for hidden-photon dark
matter with eV-scale masses. In addition, this work char-
acterizes the noise sources of DAMIC and demonstrates
the sensitivity of the experiment to interactions that pro-
duce as little as a single electron, corresponding to ion-
ization signals as small as 1.2 eV.
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Ciencia y Tecnoloǵıa (Grant No. 240666) and Dirección
General de Asuntos del Personal Académico - Universi-
dad Nacional Autónoma de México (Programa de Apoyo
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