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Bell correlations, indicating nonlocality in composite quantum systems, were until recently only
seen in small systems. Here we demonstrate Bell correlations in squeezed states of 5 × 105 87Rb
atoms. The correlations are inferred using collective measurements as witnesses and are statistically
significant to 124 standard deviations. The states were both generated and characterized using
optical-cavity aided measurements.
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The progress in the control of quantum systems has
been accompanied by the development of metrics quanti-
fying quantum correlations in many-body systems [1–4].
A widely adopted measure for systems with large num-
bers of particles is the depth of entanglement [5–7]. This
measure characterizes the minimal number of particles
that are mutually entangled in a system. However, not
all types of quantum correlations can be classified using
the concept of entanglement alone [8] [9]. An example is
the Bell-type correlations which are exhibited by quan-
tum systems violating Bell’s inequalities [10].

Demonstrating nonlocal Bell correlations was re-
stricted to small systems in which the individual com-
ponents of a composite quantum system can be mea-
sured directly. Bell correlations have been shown with
photons [11–14], ions [15], atoms [16], solid state spins
[17] and NV centers [18]. To extend the investigation
of Bell correlations to larger systems, a new framework
was developed in [19] that enables observation of Bell
correlations without accessing individual components of
a system. This framework provides a method to witness
whether a quantum many-body system features nonlocal-
ity, as evidenced by Bell correlations. The method was
employed in [20] with measurements that access only the
collective observables of a Bose-Einstein condensate of
480 87Rb atoms to demonstrate Bell correlations with a
statistical significance of 3.8 standard deviations. In this
Letter, we show Bell correlations in spin-squeezed states
in a thermal ensemble of 5 × 105 87Rb atoms at 25µK
which are statistically significant to 124 standard devi-
ations. While our result demonstrates the presence of
Bell correlations, it cannot be used to perform loophole
free tests of Bell’s inequalities, as the measurement du-
ration is longer than the time of flight for light across
the sample (the no-communication loophole [8]), and the
Bell correlation witness (Eq. 2) a priori assumes quantum
mechanics in its derivation [20].

We model our atomic ensemble as a system of N
spin-1/2 particles. Experimentally, we utilize the clock
states of 87Rb and define |F = 2,mF = 0〉 ≡ |↑〉 and
|F = 1,mF = 0〉 ≡ |↓〉 as our pseudo-spin states. For a
measurement of the ith spin on a given axis m only two

measurement outcomes are possible, j
(i)
m = ±1/2. Con-

sidering two possible axis choices, defined by the unit
vectors m and n, the quantities relevant for constructing

a Bell inequality are the expectation values
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lead to a Bell inequality under the

assumption of permutation symmetry of the spins in the
system [19]:

2Sm + Smm/2 + Smn + Snn/2 + 2N ≥ 0. (1)

This Bell inequality can be used to derive a Bell corre-
lation witness requiring measurements of only the collec-

tive spin vector J ≡ ∑N
i=1 j

(i) where j(i) =
[

j
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x , j

(i)
y , j

(i)
z

]

.

The presence of Bell correlations can then be probed
with measurements of these collective observables alone
[20, 21]. This is analogous to the widely adopted entan-
glement depth measure for characterizing entanglement
in systems with large numbers of particles [5–7], which
makes an inference on the size of entangled clusters from
measurements of collective observables. Note that these
kinds of inferences require repeated observations of iden-
tically prepared states of the system.
A particular class of collective states that can vio-

late Eq. 1 are spin-squeezed states [22]. For a symmet-
ric collective state of N spins, assuming a mean po-
larization along the x-direction, the uncertainty of two
orthogonal components of J is limited by the relation
∆Jz · ∆Jy ≥ N/4. Spins that are each independently
polarized along the x-direction comprise a coherent spin
state (CSS), an unentangled minimum uncertainty state
where ∆Jz = ∆Jy =

√
N/2 define the CSS noise. Spin-

squeezing redistributes the uncertainty from one conju-
gate variable to the other, generating entanglement be-
tween the spins in the process. As a consequence of
the uncertainty principle, reduction in uncertainty in
one conjugate variable (squeezing) comes at the expense
of a corresponding increase in the uncertainty for the
other conjugate variable (antisqueezing). For sufficient
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amounts of squeezing, the squeezed states may also con-
tain Bell correlations.
Choosing a specific set of measurement axes deter-

mined by two unit vectors z and n (Fig. 1A), the wit-
ness function can be expressed in terms of the expec-
tation values of the normalized collective spin operators
J1,n ≡ 〈2Jn/N〉 and J2,z ≡

〈

4J2
z
/N

〉

, where Jz ≡ z · J
and Jn ≡ n · J. The witness inequality then reads [20]

〈W 〉 = − |J1,n|+ (z · n)2 J2,z + 1− (z · n)2 ≥ 0 (2)

In this expression, the total particle number N inside the
expectation values is allowed to be a fluctuating random
variable, which in our experiment has a 3% standard de-
viation from one realization to the next. The first term
can be measured by rotating the collective spin state,
which amounts to changing the angle between z and n.
J1,n can then be found by measuring the projection of
the state on the z-direction after the rotation. The sec-
ond term, when 〈Jz〉 = 0, is simply proportional to the
variance of Jz normalized to the CSS noise. Eq. 2 is the
first criterion that we will use to demonstrate Bell core-
lations. From Eq. 2 it follows that the inequality

J2,z <
1

2

[

1−
(

1− J 2
1,x

)1/2
]

(3)

also guarantees Bell correlations (a full derivation can
be found in the supplementary material of [20]). Here,
assuming a squeezed state with 〈Jz〉 = 0, the quantity
J1,x is simply the coherence of the state. This second
criterion is more robust to experimental noise and it is
with this criterion we get the most statistically significant
violation. Similarly to the entanglement depth criterion
the Bell violation witness function is fully parametrized
by the coherence (the length of the Bloch vector) and the
amount of squeezing in the state [5, 6].
The experimental apparatus and preparation of the

squeezed states is described in [23]. We trap up to 7×105

cold atoms in an optical lattice generated by 1560 nm
light inside of an optical cavity. The cavity mirrors are
coated to support both 780 nm and 1560 nm modes. A
780 nm mode is used to perform quantum non-demolition
(QND) measurements of the collective state of the atoms
to prepare the squeezed states. We set the detuning be-
tween the atomic resonance and the 780 nm cavity mode
such that the effect of the atoms is a state-dependent
change in refractive index–equal in magnitude but oppo-
site in sign for the |↑〉 and |↓〉 states. The refractive index
change then manifests as a cavity resonance shift, whose
measurement serves as a QND measurement of Jz. The
technical noise limit of this QND measurement is 41 dB
below the CSS noise limit, which means the QND mea-
surement of Jz is limited only by quantum noise [23].
For the purposes of showing Bell correlations, we seek

to measure the symmetric collective observable Jz =
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FIG. 1. A: Illustration of a squeezed spin state. An exam-
ple Wigner distribution of a 10 dB squeezed state with 30
atoms, polarized along the x-axis. Squeezing is along the z-
direction, antisqueezing is along the y-direction. Also shown
is the axis n used to calculate the Bell witness in Eq. 2. B:
The sequence used for squeezing. The initial state preparation
consists of a composite π/2-pulse and a presqueezing proce-
dure that squeezes the state in Sz such that the initial un-
certainty is smaller than the cavity linewidth. The two QND
measurements then follow before a final fluorescence measure-
ment that measures the atom number. C: Histogram of the
differences in Sz between the first and second measurements
for 18.5(3) dB squeezed states of 6.5× 105 atoms.

∑N
i=1 j

(i)
z . A cavity where each atom is identically cou-

pled to the probe mode would measure this observ-
able. In this experiment, the 1560 nm light traps the
atoms at the peaks of the 780 nm standing wave inten-
sity profile, enabling uniform coupling of the atoms to
the probe. However, there is still some residual inho-
mogeneity due to the finite temperature of the atoms.
We can therefore measure only the collective observable

Sz = (1/Z)
∑N

i=1 (1− ǫi) j
(i)
z where Z is a normalization

constant and ǫi is a small quantity parametrizing the re-
duction from unity in coupling of atom i. In our setup,
we have measured a ∼ 5 × 10−3 fractional variance in
the atom-probe coupling (see [23] for details on the mea-
surement of the atom-cavity coupling). This determines
the deviation from symmetry in the measurement of the
collective spin observables.

To generate squeezing in our apparatus, the atoms,
initially prepared in the |↓〉 state, are put in an equal
superposition of the |↑〉 and |↓〉 states using a microwave
drive (Fig. 1B). Two QND measurements are then per-
formed. The first measurement projects the collective
spin state into one with reduced Sz uncertainty and in-
creased Sy uncertainty. The second measurement ver-
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FIG. 2. Rabi oscillations of squeezed states of 6.5 × 105

atoms. Upper panel: J1,n as a function of the microwave
pulse time. The fit is sinusoidal and is used to extract the
angle for the witness function in Fig. 3. The fit shows a con-
trast of 94.9(1)%. Lower panel: Residuals from subtracting
the sine fit from the data points. The increased noise at the
J1,n ≈ ±1 points is due to antisqueezing. While fluorescence
detection noise dominates at low pulse times, microwave am-
plitude noise takes over at larger times. Pulse times below
5µs were not achievable due to control system limitations.

ifies the squeezing by showing better correlation with
the first measurement than allowed with unentangled
states. Using this method we generate and characterize
up to 20 dB of spin-squeezing by the Wineland criterion
[

|〈Sx〉| /(
√
N∆Sz)

]2

[26]. Following the first measure-

ment generating the squeezing, we can choose to drive
Rabi oscillations using microwaves, amounting to a rota-
tion of the collective spin state about the y-axis. This
way, a subsequent measurement of Sz allows us to deter-
mine Sn for any chosen angle θ between z and n. Since
the squeezing is conditional on the outcome of the QND
measurement, the inferred 〈Sz〉 for the prepared squeezed
states is different in each realization. In order to show
Bell correlations, we therefore choose an axis z′ at each
realization such that the inferred 〈Sz′〉 = 0. The shot-to-
shot variation in the chosen axis can be accounted for as
noise in θ in Eq. 2 (see supplemental material [25]). For
our parameters, this noise is small compared to the noise
added by microwave rotation noise.

To relate the measured Sz observable to the properties
of Jz, we use a conservative procedure based on a model
that was verified experimentally [23]. In this model ǫi
depends on the specific position of the atom, and is ran-
domized in each experimental run. The randomization
of the position can be modeled as an additive noise that

FIG. 3. The data points show the Bell correlation witness 〈W 〉
as a function of θ. The θ values are extracted from the fit in
Fig. 2. The error bars show the combined statistical error
from the measured J1,n and the total error in the estimated
J2,z value. Points below the dashed red line show violation of
the inequality in Eq. 2. The highest violation is from the point
shown in red (also in inset) which is 56 standard deviations
from the boundary. The solid blue line is calculated from
the contrast of the fit to the Rabi fringe and the squeezing
level. For a maximally squeezed state with 100% coherence,
the minimum of the witness function would approach -0.25.

would appear in a measurement of the uniform observable
Jz. In our setup, this additive noise is 16.8(7) dB below
the CSS noise [23]. The error on this quantity is esti-
mated from the additive noises found at three different
atom numbers. According to this model, the squeezed
state shown in Fig. 1C, for example, which is 18.5 dB
squeezed in Sz is guaranteed to be squeezed by at least
14.5 dB in Jz. For all Bell correlation data presented be-
low, we calculate J2,z according to this model. The error
on this quantity is obtained by adding in quadrature the
error in squeezing measurements and the error from the
Jz estimation model.

While we measure the squeezing levels using the cavity
probe, the Rabi oscillations needed to determine J1,n are
characterized using fluorescence imaging since the cavity
does not have the dynamic range to make these mea-
surements. The fluorescence imaging is done by first re-
leasing the atoms from the optical lattice then pushing
the atoms in the |↑〉 state with a laser resonant with the
|F = 2〉 → |F ′ = 3〉 transition. After a 1.2ms time of
flight the spatially separated states are imaged for 2ms
with resonance fluorescence. The signal from the pushed
|↑〉 atoms is 20% lower due to lower fluorescence beam in-
tensity at their location. We performed a calibration to
correct for this and applied it to the raw data. The error
in the calibration procedure is insignificant compared to
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statistical errors for the presented data.
For a data set containing 15.0(7) dB inferred squeezing

in Jz, we plot the observed Rabi oscillations in Fig. 2.
Combining the Rabi oscillation data with the squeez-
ing level, we plot the witness function 〈W 〉 in Fig. 3.
All data points below the dashed line indicate nonlocal
correlations in the prepared squeezed states. The dom-
inant contribution to the error bars is the noise of the
microwave rotation which amounts to an uncertainty in
the angle θ between z and n. This leads to increasing
uncertainties with increasing microwave drive time.

FIG. 4. Entanglement depth and Bell correlation boundaries.
Red line shows the Bell violation boundary according to Eq. 3.
Blue lines show the boundary for k = 2n entanglement depth
for n = 1...9 (labeled below each line). The area below the
black line contains entangled states according to theWineland
criterion for entanglement [27]. The data points, taken with
5 × 105 atoms and approximately 450 measurements each,
have measurement strengths going from higher on the left to
lower on the right. The error bars represent 68% confidence
intervals. The open-square data point shows the most statis-
tically significant demonstration of Bell correlations (the inset
is a zoomed in version of this data point). The open-diamond
data point shows the result from a data set of 3286 runs with
unconditional squeezing.

In Fig. 4 we plot our data with the Bell correlation
boundary and entanglement depth boundaries on the
J 2
1,x-J2,z plane. Here, the J1,x values of the states were

determined by first performing the squeezing measure-
ment, then making a microwave π/2-rotation about the
y-axis to turn Jx into Jz. The observable Jz was then
measured using fluorescence imaging in 200 repetitions.
For error estimation, the fluorescence calibration errors
as well as the statistical errors are taken into account. In
Fig. 4, we also show a dataset that was unconditionally
squeezed by 8.5 dB. These states were prepared using
a similar method to that in [28]. The best condition-
ally squeezed data is 124 standard deviations from the

boundary; the corresponding number for unconditional
squeezing is 33 (see [25] for details). The largest entan-
glement depth obtained in this analysis is approximately
500. However, using a more optimal entanglement depth
criterion tailored for nonsymmetric probing [24], the best
entanglement depth becomes 1590(130) [25].

In [20], it was shown that there exist non-Gaussian
states that do not contain Bell correlations, but never-
theless violate the witness inequalities in Eq. 2 and Eq. 3.
These non-Gaussian states can only be ruled out by per-
forming of order N measurements. As there exists no
known mechanism to generate these non-Gaussian states
in our experiment, here we have assumed that the gen-
erated squeezed states are Gaussian states.

In conclusion we have shown statistically significant
Bell correlations in a large, thermal ensemble of 87Rb
atoms. Bell correlations measure nonlocality which can
be used as a resource in quantum information. While
the use of Bell correlations in many-body systems is still
unknown, they have been used to generate random num-
bers in smaller systems [29]. Recent experiments have
shown large spatial separation of quantum superposi-
tions of atomic wavepackets [30]. Combining the ideas
of spin squeezing with spatially separated superpositions,
the Bell correlations discussed in this Letter could per-
haps be used to test quantum mechanics in new ways.
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C. Klempt, and G. Toth, arXiv:1605.07202 [quant-ph]
(2016), arXiv:1605.07202 [quant-ph].

[32] L. Dellantonio, Entanglement criteria for Spin Squeezing,
Master’s thesis, University of Copenhagen (2015).

http://dx.doi.org/ 10.1103/PhysRevLett.91.180401
http://dx.doi.org/ 10.1103/PhysRevLett.115.250401
http://dx.doi.org/ 10.1103/PhysRevLett.115.250402
http://dx.doi.org/10.1103/PhysRevLett.112.100403
http://dx.doi.org/10.1126/science.1221856
http://dx.doi.org/10.1038/NPHYS2444
http://dx.doi.org/10.1038/nature15759
http://dx.doi.org/ 10.1126/science.1247715
http://dx.doi.org/10.1126/science.aad8665
http://dx.doi.org/10.1016/j.aop.2015.07.021
http://dx.doi.org/10.1103/PhysRevA.47.5138
http://dx.doi.org/10.1038/nature16176
http://arxiv.org/abs/1609.08516
http://dx.doi.org/10.1103/PhysRevA.50.67
http://dx.doi.org/10.1038/35051038
http://dx.doi.org/10.1126/science.aaf3397
http://dx.doi.org/10.1038/nature09008
http://dx.doi.org/ 10.1038/nature16155
http://arxiv.org/abs/1605.07202

