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 Excitable systems display memory, but how memory affects the excitation dynamics of such 

systems remains to be elucidated. Here we use computer simulation of cardiac action potential models 

to demonstrate that memory can cause dynamical instabilities that result in complex excitation 

dynamics and chaos. We develop an iterated map model that correctly describes these dynamics and 

show that memory converts a monotonic first return map of action potential duration into a non-

monotonic one, resulting in a period-doubling bifurcation route to chaos. 
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 Memory has been widely studied not only in the brain 

[1], but also in many other systems [2-4] in physics, 

chemistry, and biology. When a system exhibits memory, its 

dynamical behavior depends on history, such as hysteresis in 

ferromagnets. In electrically excitable cells such as neurons 

and cardiomyocytes, the excitation dynamics are regulated 

by complex networks consisting of many types of ion 

channels and signaling pathways with multiple time scales, 

and therefore, these systems often exhibit short-term 

memory. For example, electrical bursting in neurons [5-8] 

and pancreatic -cells [5] is caused by fast and slow time 

scales, and the slow time scales may give rise to short-term 

memory. In cardiac cells, the fast and slow time scales can 

give rise to early afterdepolarizations (EADs) that arise from 

the same Hopf-homoclinic bifurcation as in neurons and -

cells [9]. Complex electrical excitation dynamics are 

common in neural [10-13] and cardiac [14-21] cells, and 

low-dimensional iterated maps of action potential (AP) 

properties have been used to reveal the underlying 

mechanisms. These iterated maps do well when the memory 

effect is absent or small. However, in the presence of 

memory, low-dimensional maps may be insufficient, and 

higher-dimensional maps are usually needed to take into 

account the memory effects [22-24]. The effects of memory 

on cardiac alternans have been investigated in many 

previous studies [22-32], which generally have shown that 

memory suppresses alternans. In this study, we show that 

memory can potentiate dynamical instabilities to result in 

chaos and other complex excitation patterns in cardiac AP 

models, which can be well captured by an iterated map 

model that incorporates memory. 

 Simulations were carried out in a single cell with the 

equation of voltage (V) as: 

𝐶𝑚
𝑑𝑉

𝑑𝑡
= −𝐼𝑖𝑜𝑛 + 𝐼𝑠𝑡𝑖           (1) 

where Cm=1 F/cm2 is the membrane capacitance, Iion is the 

total ionic current density, and Isti is the stimulus current 

density, which is a 0.5 ms square pulse of amplitude 80 

A/cm2. 𝐼𝑖𝑜𝑛 = 𝐼𝑁𝑎 + 𝐼𝑠𝑖 + 𝐼𝐾 + 𝐼𝐾1 + 𝐼𝐾𝑝 + 𝐼𝑏 + 𝐼𝑡𝑜,𝑓 , in 

which the formulations of the currents are from the 1991 Luo 

and Rudy (LR1) model [33] except that 𝐼𝑡𝑜,𝑓 =

𝑔𝑡𝑜,𝑓𝑥𝑡𝑜,𝑓𝑦𝑡𝑜,𝑓(𝑉 − 𝐸𝐾)  is taken from the model by 

Mahajan et al [34]. Ito,f is the fast component of Ito, which 

activates and inactivates quickly. gto,f is the maximum 

conductance, and xto,f and yto,f are the activation and 

inactivation gating variables. The presence of Ito causes the 

so-called spike-and-dome morphology (Fig.1(a)) and is 

associated with Brugada syndrome [35], a diseased 

condition with a high risk of sudden death. It has also been 

shown in previous simulation studies [36-39] and 

experiments [40] that Ito can promote alternans and complex 

AP duration (APD) dynamics, but the dynamical 

mechanisms remain to be elucidated, which will be revealed 

in this study.  

 We calculated the S1S2 APD restitution curves in our 

simulations by pacing the cell periodically for several S1 

beats and then applying an S2 beat with a certain S1S2 

coupling interval (Fig.1(b)). Unlike the dynamic APD 

restitution used in many studies, the S1S2 APD restitution 

curve can be explicitly defined mathematically as    

𝑎𝑛+1 = 𝑓(𝑑𝑛),                 (2) 

where 𝑎𝑛+1  is the APD of the S2 beat and 𝑑𝑛  is the 

diastolic interval (DI) preceding the APD. For a 

periodically-driven cell with period T, since 𝑎𝑛 + 𝑑𝑛 = 𝑚𝑇 

(m=1, 2, 3, …), Eq.2 can be rewritten into an iterated map as 

𝑎𝑛+1 = 𝑓(𝑚𝑇 − 𝑎𝑛).            (3) 

where mT is the actual excitation period. For example, m=1 

means every stimulus gives rise to an AP (1:1 capture), m=2 

means every two stimuli result in an AP (2:1 failure), and so 

on. Eq.3 has been widely used to investigate APD dynamics 

under periodic stimulation [16-18, 41-43]. 

 Fig.1(c) shows S1S2 APD restitution curves for two S1 

pacing periods in the original LR1 model in the absence of 

Ito. The APD restitution curve shifts slightly to the right for 

the shorter S1 pacing period, indicating that there is a very 
small memory effect. Fig.1(d) shows a bifurcation diagram 

of the LR1 model by plotting the APD against the pacing 

period T. 2:1 and 3:1 stimulation failure occurs, followed by 

chaos as T decreases. Chaos occurs only when T is very short 

(<100 ms). Fig.1(e) shows the bifurcation diagram obtained 
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using Eq.3 with the S1S2 APD restitution curve (black) in 

Fig.1(c). The resulting bifurcation diagram is almost 

identical to the one from the LR1 model in Fig.1(d), 

indicating that the S1S2 APD restitution curve combined 

with Eq.3 can well describe the complex dynamics of the AP 

model.     

 We then added Ito to the LR1 model and changed several 

other parameters (see Fig.1 legend). We shifted the steady-

state curve of yto,f by 8 mV to more positive voltages. These 

changes were done to avoid non-monotonic APD restitution 

curves and stimulation failure at fast pacing and thus to avoid 

the confounding effects of these properties on  dynamical 

instabilities and chaos [43]. Adding Ito causes the APD 

restitution curve to be sigmoidal and sensitively depend on 

the S1 pacing period (Fig.1(f)), indicative of a very large 

memory effect. The APD restitution curve shifts to the left 

for the shorter S1 pacing period, a different phenomenon 

from that in the original LR1 model (Fig.1(c)) without Ito. 

Fig.1(g) shows a bifurcation diagram from the AP model 

using this parameter set, demonstrating a period-doubling 

route to chaos and an inverse period-doubling route to exit 
chaos as T decreases. Alternans and chaos occur at much 

slower pacing rates (T~900 ms), and no stimulation failure 

occurs (APD is always shorter than T). In contrast, using 

Eq.3 with the two APD restitution curves, the bifurcation 

diagrams exhibit only alternans (Fig.1(h)) since the 

maximum slope of the APD restitution curve is greater than 

one [43]. This is because the APD restitution is a sigmoidal 

function. Therefore, without taking into account the memory 

effect, the simple iterated map based on the S1S2 APD 

restitution curve cannot capture the complex dynamics of the 

AP model, which is not surprising.  

 To analyze the mechanisms of the complex excitation 

dynamics induced by memory, we developed a new iterated 

map model that incorporates the memory effect. In the LR1 

model, the slowly changing variable is the gating variable x 

of IK, which recovers slowly during the DI phase (Fig.2(a)). 

Since in this model all other variables recover quickly after 

repolarization except x, we assume that the APD depends on 

the value of x at the beginning of the AP (labeled as xn, 

Fig.2(a)) as well as the DI, i.e.,  

𝑎𝑛+1 = 𝑔(𝑥𝑛+1, 𝑑𝑛),          (4) 

in which we separate the APD dependence on the recovery 

of x and on the recovery of all other gating variables (lumped 

together in DI). To calculate the x-dependence of the APD 

in the LR1 model [i.e., function g(xn)], after pacing for 

several beats we set different initial x values at the beginning 

of the AP (xn) and measured the resulting APD (an). Fig.2(b) 

 
Fig.1. (a). AP morphology change caused by Ito. (b) Voltage trace illustrating the S1S2 pacing protocol. (c). APD restitution curves of the 

original LR1 model for two S1 pacing periods (TS1S1). (d). Bifurcation diagram (APD versus T) from the LR1 model. (e). Bifurcation 

diagrams using Eq.3 and the APD restitution curves in (c). (f). APD restitution curves for two S1 pacing periods (TS1S1) in the presence of 

Ito (gto,f=0.21 mS/cm2). Other parameters changed from the original LR1 model are: Gsi=0.1035 mS/cm2, GK1=1.33034 mS/cm2, and x5x. 

The slope is greater than 1 between DI=198 and 256 ms for the red curve and between DI=495 and 555 ms for the black curve. (g). Bifurcation 

diagram of the AP model. (h). Bifurcation diagrams using Eq.3 with the two APD restitution curves in (f), respectively. 
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shows the APD dependence on xn for different values of gto,f 

using a fixed DI=500 ms. As gto,f increases, the x-

dependence of APD becomes a steeper sigmoidal function 

and is left-shifted.    

 The next step is to derive an iterated map equation for 

xn. In the AP model, the gating variable x is described by 
𝑑𝑥

𝑑𝑡
= [𝑥(𝑉) − 𝑥]/𝑥(𝑉).    (5) 

Assuming a square voltage clamp (Fig.2(a)) is applied to 

Eq.5, one can solve Eq.5 exactly to obtain the dependence of 

xn+1 on xn as 

𝑥𝑛+1 = [𝑥𝑎 − (𝑥𝑎 − 𝑥𝑛)𝑒
−
𝑎𝑛
𝑎 ]𝑒

−
𝑑𝑛
𝑑 = 𝑤(𝑥𝑛, 𝑎𝑛),   (6) 

where we assume 𝑥∞(𝑉𝑟) = 0  and define 𝑥∞(𝑉𝑝) = 𝑥𝑎 , 

𝑥(𝑉𝑟) = 𝜏𝑑 , and 𝑥(𝑉𝑝) = 𝜏𝑎 . Vp is the constant voltage 

during the square pulse and Vr is the resting potential. In the 

original LR1 model, xa~0.5 for Vp=0, a~600 ms and d~200 

ms. Since we made the parameter change x5x, as in the 

simulation in Figs.1(f)-(h), we use a=3000 ms and d=1000 

ms for the iterated map results shown in Figs.2 and 3. As all 

other ionic currents recover quickly in the LR1 model, for 

simplicity, we ignore their contributions to restitution in the 

present study, and simply use   

𝑎𝑛+1 = 𝑔(𝑥𝑛+1).           (7) 

From Eq.7, we can express 𝑥𝑛 = 𝑔−1(𝑎𝑛). Inserting it into 

Eq.6, we have 𝑥𝑛+1 = 𝑤[𝑔−1(𝑎𝑛), 𝑎𝑛]. Therefore, one can 

rewrite Eq.7 into a first return map as 

𝑎𝑛+1 = 𝑔{𝑤[𝑔−1(𝑎𝑛), 𝑎𝑛]} = 𝐺(𝑎𝑛).   (8) 

Using Eqs. 6 and 7 (or Eq.8) with the x-dependence curve of 

APD for the same gto,f as in Fig.1(g), we obtained a 
bifurcation diagram (Fig.2(c)) that is nearly identical to the 

one from the numerical simulation of the AP model 

(compare Fig.2(c) with Fig.1(g)). Therefore, by adding 

memory into the iterated map model, one can accurately 

capture the complex excitation dynamics of the AP model, 

demonstrating that memory is key to the induction of the 

complex dynamics, including chaos.    

 To further theoretically analyze the mechanism of 

memory-induced chaos, we used a Hill function for g in Eq.7 

as   

𝑔(𝑥𝑛+1) = 𝑎𝑚𝑖𝑛 +
𝑎𝑚𝑎𝑥−𝑎𝑚𝑖𝑛

1+(
𝑥𝑛+1
𝑘𝑑

)
ℎ ,     (9) 

where h is the Hill coefficient, and amin and amax are the 

minimum and maximum APDs, respectively. We choose the 

following default set of parameters for the iterated map 

simulations in Fig.3: h=25, kd=0.07, amax=350 ms, and 

amin=50 ms. From Eq.9, we have 𝑥𝑛 = 𝑔−1(𝑎𝑛) =

𝑘𝑑√
𝑎𝑚𝑎𝑥−𝑎𝑛

𝑎𝑛−𝑎𝑚𝑖𝑛

ℎ
, and so G(an) in Eq.8 is an explicit function of 

an. In Figs.3 (a) and (b), we plot G as a function of an under 

different conditions. Differing from function f in Eq.3, the 

function G in Eq.8 is no longer a sigmoidal function but a 

non-monotonic function. Increasing h steepens the slope of 

G at the fixed point, causing the fixed point to be unstable. 

For very fast pacing or slow pacing, the slope of G at the 

fixed point is reduced, indicating that the fixed point is 

unstable for a certain range of T. In Fig.3(c) we show a first 

 
Fig.2. (a). Black traces are V and x. Red dashed line is the 

voltage clamp trace for deriving Eq.6. (b). The x-dependence 

curves of APD for gto,f = 0 (black), 0.1 (red), 0.21 (blue), and 

0.3 (green) mS/cm2. DI=500 ms. (c). Bifurcation diagram 

obtained using Eq.8 (or Eqs.6 and 7) with the x-dependence 

curve of APD for gto,f = 0.21 mS/cm2 (the blue curve in (b)). 

 
Fig.3. (a). G versus an for h=40 (black), 25 (magenta), and 10 

(cyan). T=400 ms. (b). G versus an for T=200 (cyan), 400 

(magenta), 600 (black), and 800 (olive) ms. (c). A first return 

map of the AP model in a chaotic regime (obtained from a 

chaotic trace at T=508 ms, see Fig.1(g)). (d). A bifurcation 

diagram for the default set of parameters. (e). Phase diagram 

in the h-T space. (f). Phase diagram in the d-T space. Except 

for panel (c), results in all the panels were obtained using Eq.8 

with the theoretical function in Eq.9. P2=period-2, P3=period-

3, and P4=period-4. 
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return map from the AP model in a chaotic regime, showing 

that the first return map is non-monotonic, very similar to the 

theoretical first return map in Figs.3(a) and (b). Fig.3(d) is a 

bifurcation diagram obtained using Eq.8, showing a period-

doubling bifurcation route to chaos and an inverse period-

doubling route out of chaos, a similar bifurcation structure 

to Fig.1(g) or Fig.2(c). Fig.3(e) shows a phase diagram in h-

T space showing that increasing h promotes instabilities and 

chaos. Fig.3(f) shows a phase diagram in d-T space with a 

fixed a, showing that increasing d increases the unstable 

range of T and causes the instability to occur at very long T.  

 Memory-induced chaos is not limited to the LR1 model 

but a general phenomenon in cardiac excitation. We carried 

out simulations using the human ventricular cell model by 

ten Tusscher et al [44]. The simulation results are shown in 

supplemental Fig.S1. When the original Ito (both fast and 

slow) was removed from the model, no instabilities 

occurred. When the same Ito model used for the LR1 model 

above was added, chaos and complex APD dynamics 

occurred (Fig.S1(c)). The first return map of APD 

(Fig.S1(d)) is similar to the first return map shown in 

Fig.3(c), indicating the same mechanism of chaos. By 

further analysis, we found that unlike the LR1 model, the 

memory in the ten Tusscher et al model is not caused by the 

recovery of potassium currents but rather by accumulation 

of intracellular ions. However, a simple iterated map like 

Eq.6 is no longer feasible since, for example, sodium 

accumulation affects intracellular calcium, thus requiring a 

more complex iterated map model to accurately model the 

dynamics [45]. We are developing a detailed iterated map 

model that will incorporate the memory effect caused by 

ionic accumulation to unravel the underlying complex 

dynamics.            

 Short-term memory can also potentiate complex 

dynamics and chaos in the setting of long QT syndrome [46]. 

Long QT syndrome is a cardiac disease with a high risk of 

syncope and sudden death, caused by genetic mutations or 

drugs that either decrease outward currents or increase 

inward currents to prolong APD [46]. One of the 

consequences is the occurrence of EADs in the AP 

(Fig.4(a)), which can lead to complex excitation dynamics 

[9, 47]. Fig.4(b) is a bifurcation diagram from a simulation 

of the AP model, showing complex excitation patterns and 

chaos as the pacing period T increases. We also calculated 

the S1S2 APD restitution curves for two different S1 pacing 

periods. The S1S2 APD restitution curves exhibit a staircase 

type increase against DI (Fig.4(c)), with each higher step 

corresponding to an extra EAD in the AP. Faster S1 pacing 

causes the APD restitution curve to shift to the right. The 

bifurcation diagram (Fig.4(d)) obtained using Eq.3 and the 

APD restitution curves shows a sudden transition to APD 

alternans, which completely misses the bifurcation sequence 

of the AP model. We then used the same method as before 

to measure the x-dependence curve of APD (Fig.4(e)). Using 
the new iterated map model Eq.8 (or Eqs.6 and 7), the 

bifurcation diagram (Fig.4(f)) shows almost exactly the 

same bifurcation sequence as in the AP model. Bifurcation 

diagrams in wider ranges of T show that the iterated map 

model Eq.8 can still capture the bifurcation sequences of the 

AP model (supplemental Fig.S2).  These results indicate 

that memory plays an important role in generating the 

complex EAD-related excitation dynamics.   

 In this study, we show that short-term memory can 

induce or potentiate complex excitation dynamics, including 

chaos, under certain cardiac disease conditions. The new 

iterated map model that incorporates memory properly can 

well describe the complex dynamics and unravel the 

underlying mechanisms, which may provide further 

understanding of memory and chaos in the genesis and 

maintenance of cardiac arrhythmias [47, 48]. These 

mechanistic insights may not only be limited to complex 

excitation dynamics in cardiac myocytes but also to those in 

other electrically excitable cells. For example, the bursting 

dynamics in neurons [10-13] and pancreatic -cells [5] are 

irregular, which can result from either random ion channel 

openings or dynamical chaos. Since the bursting dynamics 

are also governed by fast-slow dynamics [5-9] similar to the 

EAD dynamics in cardiac myocytes, the same mechanism of 

memory-induced chaos may be applicable to irregular 

bursting dynamics in these cases.  

 

 
Fig.4. (a). APs showing an EAD. All parameters are from the 

original LR1 model, except x10x. (b). Bifurcation diagram 

from the LR1 model. (c). S1S2 APD restitution curves for two 

different S1 pacing periods (TS1S1). (d). Bifurcation diagram 

obtained by iterating Eq.3 with the S1S2 APD restitution curve 

(black) in (c). (e). APD versus xn for DI=1000 ms. (f). Bifurcation 

diagram obtained by iterating Eq.8 (or Eqs.6 and 7) with the x-

dependence curve of APD in (e). 
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