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We develop a scaling theory of the unjamming transition of soft frictionless disks in two dimen-
sions by defining local areas, which can be uniquely assigned to each contact. These serve to define
local order parameters, whose distribution exhibits divergences as the unjamming transition is ap-
proached. We derive scaling forms for these divergences from a mean-field approach that treats the
local areas as non interacting entities, and demonstrate that these results agree remarkably well
with numerical simulations. We find that the asymptotic behaviour of the scaling functions arises
from the geometrical structure of the packing while the overall scaling with the compression energy
depends on the force law. We use the scaling forms of the distributions to determine the scaling of
the total grain area AG, and the total number of contacts NC .

PACS numbers: 83.80.Fg, 81.05.Rm, 64.70.Q-, 61.43.-j, 61.20.-p, 45.70.-n

Introduction: The jamming of soft particles has been
used as a paradigmatic model of granular[1–9] and glassy
systems [10–12], active matter [13] and biological tissues
[14]. Frictionless soft disks and spheres serve as a first
approximation to many theoretical models and have been
extensively investigated over the last decade [15–27]. The
unjamming transition of soft spheres exhibits properties
reminiscent of critical points in equilibrium systems. Ob-
servations include power laws [16], a scaling form for the
energy analogous to free energy and resulting relation-
ships between scaling exponents [26], scaling collapse of
dynamical quantities such as viscosity [28], and indica-
tions of diverging length scales [21]. Many scaling prop-
erties of soft particles near the jamming transition have
been analysed in detail [29, 30], and finite-size scaling
studies seem to suggest a mixed order transition with
two critical exponents [18, 21].

Despite considerable effort towards a unifying theory,
a clear description of unjamming is still lacking, and the
origin of various power laws in this system have remained
somewhat mysterious. Theories so far have focussed on
the behavior of global quantities such as energy, packing
fraction, pressure, stresses, and the total contact num-
bers. This is in contrast to the norm in studying critical
points where a local order parameter and its distribution
within the system is of primary importance. In this letter
we highlight the emergence of diverging contributions to
distributions of local quantities, and show how the un-
derlying disorder of the contact network naturally lead
to these divergences. This in turn leads to non-trivial
power laws involving global quantities such as the excess
contact number, and the areas occupied by grains.

Our treatment relies on assigning local grain areas to
triangular units uniquely associated with individual con-
tacts, which play the role of “quasiparticles”. We use
properties of the underlying distribution of interparticle
distances and angles to derive a probability distribution
of these areas, and compare these predictions to results of
numerical simulations. As will be clear from our analysis,
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FIG. 1: A section of a jammed configuration of soft frictionless
disks. The centers of the grains with radii {σg} are located
at positions {~rg}. The contact points between grains are lo-
cated at positions {~rc}, with contact vectors ~rg,c = ~rc − ~rg.
The distance vectors ~rg,g′ = ~rg′ − ~rg form a network of faces
(minimum cycles) with zv sides each. The polygonal tiling
associated with the packing partitions the space into areas oc-
cupied by grains (white) and areas occupied by voids (blue).
The triangle formed by the points (~rg, ~rc, ~rc′) (shaded area)
is uniquely assigned to the contact c and has an associated
area a ≡ ag,c, with a normalized area αc = ag,c/σ

2
g .

the appearance of triangular units as the basic objects in
the scaling theory highlights the importance of three-body
terms as opposed to two-body terms such as interparticle
distances that have been considered in the literature.

We focus specifically on the unjamming transition of
soft disks, i.e. we approach the transition point from
mechanically stable (jammed) packings with decreasing
energies (EG → 0+). In such jammed states, the disks
organize into complicated “random” structures which are
hard to characterise owing to the complexity of the non-
convex curved shapes formed by voids. In order to avoid
this problem we construct polygonal tilings that parti-
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tions space into areas occupied by grains and areas oc-
cupied by the voids (see Fig. 1). This construction[27]
bears similarities to the “quadron” framework [32–34].

We then assign the polygonal grain areas to triangular
units αc (normalized by the size of each disk), uniquely
associated with each contact c. This defines a reliable
local order parameter for the unjamming transition [27].
The probability distribution of these areas displays diver-
gences at well defined values of α that become sharper
as the transition is approached. We identify these as
arising from specific structures within the jammed state.
The distribution of areas is best expressed as

p(α) = preg(α) + pDO(α)︸ ︷︷ ︸
p(α,>3)

+ pO(α)︸ ︷︷ ︸
p(α,3)

, (1)

where pDO and pO are classified as “disordered” and “or-
dered” divergences respectively. Disordered divergences
arise from cycles (see Fig. 1) with four or more disks in
contact (zv > 3, labelled as > 3 for brevity), and the
“ordered” ones arise within cycles formed by three disks
(zv = 3, labelled as 3). preg represents the regular part
of the distribution that does not have a diverging energy
dependence. The main result of this letter is the deriva-
tion, and verification through numerical simulations of a
scaling form for pDO (Fig. 2), which displays a divergence
at α = 1/2,

pDO(α) = EG
−1/2µPDO

( 1
2 − α
EG

1/µ

)
, (2)

where µ characterizes the interparticle potential (µ = 2
for harmonic potentials). The scaling function possesses
the following asymptotic behaviour:

PDO(x) ∼





x3/2 , x→ 0,

x−1/2 , x→∞ .

(3)

Similarly, the “ordered” divergence has a scaling form

pO(α) = EG
−1/µPO

( √
3
4 − α
EG

1/µ

)
, (4)

which is integrable in the EG → 0+ limit. The scaling
functions do not depend on the interaction potential.

The divergences in p(α) are reminiscent of Van Hove
singularities in the vibrational density of states in crys-
tals [35] which are broadened by thermal disorder. The
divergences in p(α) are broadened at finite EG, becoming
infinitely sharp only as EG → 0+. These singular distri-
butions are in sharp contrast to the broadening of or-
der parameter distributions approaching a thermal crit-
ical point. We will show that the power laws describing
the evolution of global quantities approaching unjam-
ming are a consequence of the singularities of pDO(α).

In particular, the total number of contacts (NC), with
∆NC = NC(EG)−NC(0) scales as:

∆NC ∼ E1/2µ
G , (5)

a form observed in several studies of jamming[16, 19, 26,
27, 31]. The scaling of the total grain area AG, with
∆AG = AG(EG)−AG(0), follows the scaling of ∆NC .
Energy Ensemble and Local Areas: We perform our

analysis in a fixed energy-volume ensemble (EG, V )
[27] of jammed states of soft frictionless disks in two-
dimensions. The microstates of this ensemble are spec-
ified by grain positions {~rg} and radii {σg} that yield
a force balanced state at a given energy EG. We keep
the volume of the total space fixed (Lx = Ly = 1). We
consider disks interacting via a repulsive potential

V [{~rg, σg}] =
∑

g 6=g′

1

µ

(
1− |~rg,g′ |

σg,g′

)µ
Θ

(
1− |~rg,g′ |

σg,g′

)
,

(6)
with µ > 1, ~rg,g′ = ~rg′ − ~rg, σg,g′ = σg + σg′ , and the
energy of a microstate is EG =

∑
g V [{~rg, σg}].

Each jammed state of frictionless disks is characterised
by a system spanning contact network which naturally
partitions the space into convex minimum cycles (or
faces) of zv sides each (see Fig. 1). The system can
then be parametrized in terms of the interparticle dis-
tance vectors {~rig,g′} where the index i labels the vectors
within each cycle. The loop constraints around each face∑
i ~r
i
g,g′ = 0, account for the overcounting of the degrees

of freedom. As we show [37], these constraints provide
the crucial correlations that determine the internal struc-
tures and in turn the scaling behaviour near the unjam-
ming transition. The positions of the contacts are repre-
sented by {~rc} with ~rc = ~rg +

σg

σg+σ′
g

(~rg′ − ~rg), where c is

the contact between grains g and g′, and contact vectors
~rg,c = ~rc − ~rg. Each contact is counted twice, once for
each grain (see Fig. 1). Following the network represen-
tation introduced in [27], we define local and global order
parameters, respectively, as the areas:

ag,c =
1

2
(~rg,c × ~rg,c′) and AG =

NC∑

c=1

ag,c. (7)

where ~rg,c and ~rg,c′ are adjacent contact vectors (see Fig.
1) and the convention is that the area bounded by (c, c′)
is uniquely assigned to the contact c. These individual
areas, ag,c, which play the role of a local packing fraction
in our description can vary between 0 and 1

2σg
2 where σg

is the radius of grain g.
Distribution of areas: We begin by deriving the scal-

ing behavior of the distribution of areas based on some
simplifying assumptions, and then compare the derived
results to ones observed in numerical simulations. We
assume that (i) the underlying system is disordered, and
has reproducible local distributions, (ii) the distribution
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of contact vectors is independent of their orientation, and
(iii) that there are no correlations between the contact
triangles beyond those required by the loop constraints
[37]. The comparison to numerical simulations demon-
strates that this mean-field theory provides an accurate
description of the scaling forms. In order to account
for the varying sizes of the grains between configura-
tions at a given EG, we work with the normalized area,
αc = ag,c/σg

2, which is bounded between [0, 12 ]. Simi-
larly we normalize the contact vectors by the size of the
disks, with |~rg,c| → |~rg,c|/σg (to avoid a proliferation of
symbols) now being bounded between [0, 1].

In a disordered jammed state, the overlaps between
disks ∆rg,c with |~rg,c| = 1 − ∆rg,c, vary between con-
tacts and can be treated as random variables with a re-
producible distribution p(∆rg,c) depending on EG. Using

EG = 1
NG

∑NC

i=1(∆rg,c)
µ (Eq. (6)), naturally leads to the

following scaling form for the distribution of overlaps

p(∆rg,c) =
1

E
1/µ
G

Pr
(

∆rg,c

E
1/µ
G

)
. (8)

Although the contact vectors, ~rg,c, have a complicated
joint distribution, we focus on p(~r1, ~r2), which is the joint
probability of occurrence of contact vectors ~r1, ~r2 at two
contiguous edges of a minimum cycle, bounding a given
area α. The probability of each individual area is then

p(α) =

∫
~dr1

∫
~dr2 p(~r1, ~r2) δ

(
1

2
|~r1||~r2| sin θ − α

)
, (9)

where θ is the relative angle between the two vectors.
We can next express the joint distribution as

p(~r1, ~r2) = p(|~r1|)p(|~r2|)ρ(θ) , (10)

with p(~r1) =
∫
d2~r2p(~r1, ~r2) = 1

2πp(|~r1|). In Eq. (10), we
have extracted the overall scaling with energy into the
first two terms involving the magnitudes, encoding the
correlations in ρ(θ). As detailed in [37], we treat these
correlations within a mean-field framework that incorpo-
rates the loop constraints on the contact vectors exactly.
A systematic diagrammatic expansion [37] shows that
ρ(θ) and consequently p(~r1, ~r2) has different behaviours
within cycles with zv > 3 and zv = 3. Importantly, cy-
cles with zv > 3 contribute a finite amount to ρ(θ) at
θ = π/2 whereas zv = 3 do not.
Scaling forms: From Eq. (9), it is clear that if the

lengths of the contact vectors are held fixed, the vanish-
ing slope of the sine function leads to a singularity in p(α)
at θ = π/2 (analogous to Van Hove singularities arising
from vanishing gradients). As EG → 0+, the fluctuations
in ∆rg,c decrease (Eq. (8)), leading to a sharpening di-
vergence. To proceed, we split the area distribution for
zv > 3 into a divergent part pDO arising from angles close
to π/2, and a regular part preg that arises from the rest

p(α,> 3) = preg(α) + pDO(α). (11)
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FIG. 2: Scaling collapse of the distribution of areas p(α,> 3)
of the zv > 3 cycles at different energies. The plot shows
distributions for NG = 4096 disks interacting via harmonic
potentials (µ = 2). x → 0 corresponds to disks with contact
angles close to π/2. The scaling is consistent with Eq. (2).
The limiting behaviours of the distribution are provided in
Eq. (3). (Inset) Comparision between the distributions ob-
tained from the theory (bold lines) and numerical simulations
demonstrating very good agreement.

Without loss of generality, we assume that ρ(θ,> 3) near
θ = π/2 contributing to pDO(α), can be represented as a
uniform distribution, ρπ/2 in the range [π2 −E , π2 +E ], the
corrections are of higher order in E . Then integrating Eq.
(1) over the full range of α leads to the normalization

∫ 1/2

0

preg(α)dα = 1−
∫ 1/2

0

pO(α)dα− 2Eρπ/2. (12)

Since pO(α) is integrable (Eq. (4)), the only energy de-
pendence of preg(α) arises from the width E . To derive
pDO(α), we change variables {θ → sin θ} giving

ρ(sin θ,> 3) = ρπ/2
(
1− sin2 θ

)−1/2
∣∣∣θ − π

2

∣∣∣ < E . (13)

Next, performing the integration over sin θ in Eq. (9)
using the above expression leads to:

pDO(α) = ρπ/2

∫ 1

0

dr1

∫ 1

0

dr2
p(r1)p(r2)√
r21r

2
2 − 4α2

G(r1, r2, α),

(14)
where G(r1, r2, α) is a product of theta functions that
ensures sin

(
π
2 − E

)
< 2α

r1r2
< 1. Although the integral in

Eq. (14) does not have a simple closed form answer for
general p(r), it is clear that pDO(α) has a singularity as
α→ 1/2 and as r1 → 1 and r2 → 1, and it is straightfor-
ward to extract the scaling behaviour announced in Eq.
(2). In order to compute the scaling function, we replace
the distribution of the contact vectors in Eq. (8) with a
uniform distribution, allowing us to perform the integral
exactly. As shown in [37], the scaling form announced in
Eq. (3) follows. From this analysis, it is evident that the
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exponents 1/2 and 3/2 appearing in the scaling function
(Eq. (3)) arise from the purely geometric nature of the
divergence at θ ' π/2, whereas the scaling with EG is
a consequence of the scaling of the distribution of con-
tact lengths and is controlled by the force law. As shown
in [37], the distribution of angles for the zv = 3 cycles

are centered around a finite value θ = arcsin
√
3
2 . This

leads to an integrable divergence in the distribution of
areas from Eq. (9) as EG → 0+, and the scaling form
announced in Eq. (4) follows. The contribution from
these ordered structures to the disordered divergence at
θ = π/2 is therefore exponentially suppressed.
Numerical Simulations: In order to test the predic-

tions made by our theory, we perform numerical sim-
ulations for a system of bidispersed disks with diam-
eter ratio 1 : 1.4 interacting via harmonic potentials
(µ = 2). Configurations are produced using a variant of
the O’Hern protocol [16]. The energies simulated range
from EG = 10−15 to 10−3, with the number of disks
ranging up to NG = 8192. A scaling collapse of the dis-
tributions according to the scaling form in Eq. (2) is il-
lustrated in Fig. 2 along with the two limiting behaviours
announced in Eq. (3). The inset of Fig. 2 illustrates the
remarkable agreement between the theoretical distribu-
tions and the ones obtained from numerical simulations.

Scaling of Global Quantities: We can use the scaling
with EG of p(α) to derive global scaling properties of
the system as the unjamming transition is approached.
Since the microscopic areas are uniquely assigned to a
contact, the incremental global area covered by grains
scales as ∆AG ∼ ∆NC . To connect p(α) to the number
of contacts NC , we define g(α), the density of states of
normalized areas, which we split in a manner similar to
p(α) in Eq.(1) as

g(α) = NCp(α) = NCpDO(α)︸ ︷︷ ︸
=gDO(α)

+NCpreg(α)︸ ︷︷ ︸
=greg(α)

+NCpO(α)︸ ︷︷ ︸
=gO(α)

.

(15)
The regular part greg(α) represents the density of areas
away from the divergences and is independent of EG.
However preg(α) has an energy dependence from the nor-
malization (Eq. (12)). To extract this dependence, we
need to fix E in a self-consistent manner. The height of

the peak of pDO(α) scales as E
−1/2µ
G , while the width

scales as E
1/µ
G (Eq. (2)). The contribution from pDO(α)

to the normalization in Eq. (12) therefore scales as E
1/2µ
G ,

leading to

2Eρπ/2 ∼ E1/2µ
G . (16)

Then using Eq. (15) corresponding to the regular part,
and the normalization in Eqs. (12) and (16), we obtain

NC(EG) =

∫ 1/2

0
greg(α)dα

∫ 1/2

0
preg(α)dα

≈ NC(0) +NC,1/2µE
1/2µ
G + ...

(17)
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FIG. 3: Scaling of global quantities with energy for the same
system as Fig. 2: (i) the excess number of contacts in the zv =
3 cycles (∆n3 = n3(EG) − n3(0)) (ii) the excess normalized
area per contact of the zv > 3 cycles (∆〈α〉>3 = 〈α〉>3(EG)−
〈α〉>3(0)). The scaling is consistent with predictions in Eqs.
(18) and (19) (Inset) Scaling of excess grain area ∆AG =
AG(EG)−AG(0) displaying a scaling consistent with ∆AG ∼
∆NC and Eq. (5).

which is the scaling relation mentioned in Eq. (5). In
the inset of Fig. 3 we show the scaling of ∆AG with
energy, which displays a scaling consistent with ∆AG ∼
∆NC and Eq. (5). Two new predictions also emerge
from a more detailed consideration of divergences in the
area distributions [36]. Defining n3 and n>3 as the total
number of contacts in cycles with zv = 3 and zv > 3
respectively. The excess number of contacts in different
cycles (∆n≥3 = n≥3(EG)− n≥3(0)) scale as

∆n3 ∼ E1/2µ
G ; ∆n>3 ∼ O(E

1/µ
G ). (18)

Defining 〈α〉3 and 〈α〉>3 as the normalized areas per
contact in the different cycles, ∆〈α〉≥3 = 〈α〉≥3(EG) −
〈α〉≥3(0) scales with energy as

∆〈α〉3 ∼ O(E
1/µ
G ); ∆〈α〉>3 ∼ E1/2µ

G . (19)

The observed scaling of these global quantities for har-
monic potentials is compared with predictions in Fig. 3.
Discussion: We identified local units of areas associ-

ated with contacts as an order parameter associated with
the unjamming transition. The marginal state at unjam-
ming is characterized by singularities in the distribution
of these local areas. The primary scaling in the system
arises from contact vectors with relative angles close π/2,
which lead to a high susceptibility of these contact areas
to changes in the compression energy. This large sus-
ceptibility, which is a signature of the marginal state, is
reminiscent of Van Hove singularities that render crystals
“fragile” and particularly susceptible to structural tran-
sitions. The dependence of exponents on the interaction
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potential arises from the scaling of the overlaps, and is a
well-known feature of jamming that distinguishes it from
usual critical phenomena. By comparing with numeri-
cal simulations, we showed that predictions based on the
distributions of local areas reproduces the scaling proper-
ties of several global variables remarkably well (Fig. 3).
Our mean-field description treats the contact triangles
as non-interacting entities. Computing the contributions
from the correlations between these individual units is
non-trivial, and numerical results indicate corrections to
the global exponents derived in this letter [27]. In fu-
ture, we plan to explore these non-mean-field effects on
the unjamming transition.
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