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Dirac and Weyl semimetals display a host of novel properties. In Cd3As2, the Dirac nodes lead
to a protection mechanism that strongly suppresses backscattering in zero magnetic field, resulting
in ultrahigh mobility (∼ 107 cm2 V−1 s−1). In applied magnetic field, an anomalous Nernst effect is
predicted to arise from the Berry curvature associated with the Weyl nodes. We report observation
of a large anomalous Nernst effect in Cd3As2. Both the anomalous Nernst signal and transport
relaxation time τtr begin to increase rapidly at ∼ 50 K. This suggests a close relation between the
protection mechanism and the anomalous Nernst effect. In a field, the quantum oscillations of bulk
states display a beating effect, suggesting that the Dirac nodes split into Weyl states, allowing the
Berry curvature to be observed as an anomalous Nernst effect.

The field of topological quantum materials has recently
expanded to include the Dirac (and Weyl) semimetals,
which feature 3D bulk Dirac states with nodes that are
protected by symmetry [1–4]. In Dirac semimetals, each
Dirac cone is the superposition of two Weyl nodes which
have opposite chiralities (χ = ±1). The Weyl nodes are
prevented from hybridizing by the combination of point
group symmetry, inversion symmetry and time-reversal
symmetry (TRS) [4]. In the presence of a magnetic field
B, the breaking of TRS leads to separation of the Weyl
nodes and the appearance of a Berry curvature Ω(k).
Because Ω(k) acts like an intense magnetic field, it ex-
erts a strong force on charge carriers [5, 6]. The first
examples of Dirac semimetals, Na3Bi and Cd3As2, were
identified by Wang et al. [7, 8]. (In the Weyl semimetal
TaAs, the Weyl nodes are already well separated in zero
B because its space group lacks inversion symmetry. The
signature surface Fermi arcs were recently observed by
angle-resolved photoemission experiments on TaAs [9–
11]. Surface modes in Cd3As2 have also been observed
by Shubnikov de Haas (SdH) oscillations [12].)

An interesting phenomenon in Dirac and Weyl
semimetals is the chiral anomaly which refers to the axial
current that results from “pumping” electrons between
left- and right-moving Dirac branches (of opposite χ)
when an electric field E is applied ‖ B [13–16]. Re-
cently, the chiral anomaly was successfully observed as
a large, negative longitudinal magnetoresistance (LMR)
in Na3Bi [17] and GdPtBi [18]. The anomaly engenders
a 4- to 6-fold decrease in the longitudinal resistance in a
moderate B. Negative LMRs have also been reported in
Bi1−xSbx [19], Cd3As2 [20, 21], ZrTe5 [22], TaAs [23].

Quite distinct from the chiral anomaly, the Berry cur-
vature arising from separation of the Weyl nodes leads to
other unusual transport effects, particularly the anoma-
lous Hall effect (AHE) and the anomalous Nernst effect
(ANE) [24, 25]. Unlike conventional system, no ferro-
magnetism is required for the AHE and ANE in Dirac
semimetals because of the strong Berry curvature em-
anated by Weyl nodes. The anomalous Hall conductivity

is expressed as [3, 26],

σAHE =
e2

2πh

∣∣∣∑∆ki

∣∣∣ (1)

where ∆ki is the distance between the ith pair of Weyl
nodes. The thermopower and Nernst effect in Weyl
semimetals has been calculated in the Boltzmann equa-
tion approach [27–30].

We report measurements of the thermoelectric tensor
Sij of Cd3As2 in two samples (A4, A5) in “set A” and two
samples (B10, B20) in “set B” with the applied thermal
gradient −∇T ||x̂ and magnetic field B||ẑ (see Ref. [20]
for details of the electrical transport measurements in set
A and set B samples). We obtain Sxx and Sxy as

−Sxx = Ex/|∇T | = −(ρxxαxx + ρyxαxy) (2)

Sxy = Ey/|∇T | = ρxxαxy − ρyxαxx, (3)

where αij is the thermoelectric linear response tensor,
and ρij is the resistivity tensor (see Supplement for the
details).

In Dirac semimetals, the AHE and ANE arise be-
cause the Berry curvature Ω(k) imparts to the carriers
an anomalous velocity vA = Ω(k) × ~k̇, i.e. Ω(k) acts
like an effective magnetic field in k space (k̇ is the rate
of change of the wavevector k) [25]. Previously, the AHE
was observed in Cd3As2 as a weak, low-B, anomaly in
the Hall resistivity ρyx (Ref. [20]). The advantage of the
Nernst effect is that it is more sensitive to the anomalous
contributions [31–33]. This is because the thermoelectric
signals are proportional to the derivative of the conduc-
tivities as given by the Mott relation [34], viz.,

αij = A
[
∂σij
∂ε

]
ζ

,

(
A =

π2

3

k2BT

e

)
, (4)

where kB is Boltzmann’s constant, e the elemental charge
and ζ the chemical potential.

In high-mobility semimetals, the conventional Nernst
signal rises steeply to a sharp Drude-like peak at the
peak field Bp = 1/µ (where µ is the mobility), and then
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decreases towards zero when B � 1/µ (the “dispersive”
field profile is well illustrated by the curves in Ref. [35]).
By contrast, the ANE signal rises to a maximum value
in weak B and remains pinned at this plateau value at
large B; its profile is step-like.

Figure 1 shows the measured Nernst signals at selected
temperatures T in samples A4, A5, B10 and B20, respec-
tively. The anomalous component is clearly evident in all
4 samples. The ANE in set A samples dominates the con-
ventional Nernst effect at all T up to 200 K. By contrast,
in set B samples, the conventional dispersive profile dom-
inates the signal at high T , and the ANE only becomes
prominent below 30 K. Theoretically, the separation of
the conventional and anomalous contributions to the ob-
served Nernst signal has not been solved in the high-field
regime. As an empirical approach, we adopt the following
expressions:

Sxy = SNxy + SAxy (5)

SNxy = SN0
µB

1 + (µB)2
(6)

SAxy = ∆SAxy tanh(B/B0). (7)

Here, µ is the carrier mobility, SN0 is the amplitude of the
conventional semiclassical contribution SNxy (for details,

see Ref. [35]), ∆SAxy is the amplitude of the anomalous

Nernst signal SAxy, and B0 is the saturation field above

which the signal attains its plateau value ∆SAxy.
The empirical expressions provide good fits in all sam-

ples. Examples of the fits are shown for sample A4 in
Fig. 2B. The amplitude ∆SAxy of the ANE derived from
the fits is plotted in Fig. 2A. Interestingly, while the
anomalous Nernst amplitude is small and nearly T in-
dependent in set B samples, it is large and strongly T -
dependent in set A samples. The steep increase below
∼ 50 K recalls the T dependence of the transport life-
time τtr in set A samples. This suggests a close relation
between the ANE and the protection mechanism from
backscattering implied by the ultrahigh mobility in set
A samples ( µ ∼107 cm2 V−1 s−1; see Fig. 1 of Ref. [20]
and Fig. 2).

Next, we discuss the thermopower Sxx. The measured
signals in samples A4, B10 and B20 can be explained by
the conventional semiclassical expression (see Ref. [35])

Sxx(B) = S0
1

1 + (µB)2
+ S∞

(µB)2

1 + (µB)2
. (8)

Here, S0 is the thermopower at B = 0 and S∞ is the
limiting value when B � 1/µ. For samples A4 and B10,
the fits are shown in Panels A, B of Fig. 3. (In sample A5,
the ultrahigh mobility makes the observed thermopower
harder to interpret).

As discussed, the splitting of each Dirac node into two
Weyl nodes leads to a finite Ω(k). In addition, separa-
tion of the Weyl nodes also produces a beating of the

bulk quantum oscillations which can be seen in the ther-
mopower and Nernst effect (but are less evident in ρij
measured on the same samples [20]). Panel C of Fig. 3
plots the oscillatory part of the Nernst signals in sam-
ples A4, A5, B10 and B20. The beating effect is quite
prominent. The macroscopic thickness of the samples
(350-1460 µm) implies that the beating effect arises from
interference of closely spaced oscillations in bulk states,
rather than from surface states related to Fermi arcs.
Panel D shows the index plots for the average frequency
and the envelope frequency of the beating signal in sam-
ple A5. From the slope of the index plot, we extracted
the values Save

F = 42 T and Senv
F = 4.5 T, from which we

obtain two frequencies S1 = 46.5 T and S2 = 37.5 T dif-
fering by ∼ 20%. Similar values were found for samples
A4 (S1 = 50.8 T, S2 = 44.3 T), B10 (S1 = 55.6 T, S2 =
46.9 T), B20 (S1 = 51 T, S2 = 43 T). The beating effect
is consistent with the scenario in which the Dirac nodes
split into Weyl nodes, leading to distinct Fermi surface
cross-section areas.

We also investigated the magnetic response of Cd3As2
via torque magnetometry measurements on samples A4,
A5, B10 and B20 (Fig. 4). Each of the samples, except for
B10, shows an “anomalous magnetization” Mτ ≡ τ/H.
This is quite surprising because Cd3As2 does not have
magnetic elements. This raises the question whether
the observed ANE is related to the “anomalous magne-
tization”. At first glance, the anomalous Mτ is remi-
niscent of conventional ferromagnetism. However, this
scenario is easily excluded by comparing the data of Mτ

taken via torque magnetometry with the magnetization
data measured by regular SQUID magnetometry. Both
the anomalous Mτ and the ANE signals are unchanged
whether we cool in a finite field or in zero field (see Sup-
plement). By contrast, the step-like magnetization ob-
served in the SQUID data appears only when the sample
is cooled in a finite field. To us, it is highly unlikely that
the ANE arises from conventional ferromagnetism.

A second question is whether the anomalous Mτ is
coming from the orbital magnetization [25, 36] generated
by Ω(k). If this is the case, the ANE and the “anoma-
lous magnetization” should show the same dependences
on both B and T . However, our experiments also ex-
clude this scenario. In all samples, the anomalous Mτ

is restricted to fields well below ∼ 1 T at all T investi-
gated (its magnitude which persists to 200 K is nearly T
independent). By contrast, the magnitudes of the ANE
increase rapidly below ∼ 50 K in set A samples. The on-
set fields of the anomalous Nernst signals also increase up
to & 5 T at 200 K, in strong contrast with the behavior
of Mτ . Finally, in sample B10, the ANE is finite whereas
the anomalous Mτ signal is absent altogether. Therefore,
we conclude that the ANE and the anomalous Mτ have
very different origins (further discussion on this point is
given in the Supplement).

In conclusion, we have performed a detailed investiga-
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tion of the thermoelectric tensor in Cd3As2 for both set
A and set B samples. The Nernst signals reveal a large
ANE, suggestive of the existence of Berry curvature Ω(k)
produced by separation of the Weyl nodes in applied B.
We also observe a significant beating effect in the quan-
tum oscillations of the Nernst signals. The magnitude of
the anomalous part of Nernst signals can be extracted
via the phenomenological expressions Eqs. 5, 6, 7, whose
temperature dependence in set A samples shows a rapid
increase below ∼ 50 K. The strong increase of τtr below
50 K suggests a close relation between the ANE and the
mechanism that protects the carriers from backscatter-
ing.
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FIG. 4. (color online). “Anomalous magnetization” Mτ ≡ τ/H at selected T obtained from torque magnetometry in samples
A4, A5, B10 and B20. The anomalous part is confined to B below 1 T in all samples at all T investigated, with a nearly
T -independent magnitude. These characteristics distinguish Mτ from the ANE signals in Fig. 1, and imply that Mτ has a
different origin from the ANE.


