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Abstract 

Photoelectron spectra and ionization rates encompassing relativistic intensities and 

hydrogen-like ions with relativistic binding energies are obtained using a quasi-classical S-matrix 

approach. These results, along with those based on the imaginary time method, are compared 

with 3D, ½-period ab initio simulations for a wide range of ionization potentials and electric 

field amplitudes. Significant differences between the three results are demonstrated.  Time-

dependent simulations indicate that the peak ionization current can occur before the peak of the 

electric field. 
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Advances in laser technology are expanding the frontiers of high-field science.  An 

extreme example is vacuum polarization, in which an intense laser near the Schwinger field 

creates electron-positron pairs.  In the near term, one has photoionization of increasingly 

relativistic bound states, and an urgent need to understand the limitations of current models.  

Horizon laser systems, such as the Extreme Light Infrastructure, will be able to fully strip heavy 

elements via tunneling ionization.  Ultimately, both the quantum mechanical bound electron 

dynamics and free electron motion must be treated relativistically. 

Relativistic photoionization implies a binding energy comparable to the electron rest 

mass or a light intensity sufficient for relativistic photoelectron dynamics. When both are true, 

the abundance of photons permits a semi-classical treatment of the light field. The relativistic 

binding energies and resulting photoelectron kinetic energies, however, require a covariant 

quantum description of the electronic wavefunction, i.e. the Dirac or Klein-Gordon (K-G) 

equations. There are two analytical approaches for determining the photoelectron spectra and 

ionization probabilities [1-4]. The imaginary time method (ITM) employs a Feynman propagator 

to evolve the electronic wavefunction from its initial bound state to a final state [3].  The 

ionization probability is found by minimizing an action functional along electron trajectories 

integrated in imaginary time through the classically forbidden region.  In the second approach, an 

S -matrix is defined as an overlap integral between a bound state in the distant past and a free, 

final state in the remote future [1]. 

The two approaches involve several approximations and until now their predictions have 

never been tested against fully relativistic 3D ab initio simulations.  Even in 2D only a few 

nascent explorations appear in the literature [5-7].  The purpose of this paper is to obtain the 

ionization rate of hydrogen-like ions in the regime of relativistic binding (i.e., high charge states) 

and relativistic photoelectron dynamics (i.e., high laser intensities) and compare the results with 

3D, ½-period ab initio simulations. 

The ionization rates for the K-G and Dirac equations were calculated using the imaginary 

time method in [8,9].  Here, using the S-matrix approach, a novel ionization rate is derived for 

the K-G equation.  The procedure resembles the one used in [10] for the Dirac equation.  For all 

cases considered here, the applied radiation field is taken as a plane wave.   
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To parallel the Dirac equation analysis, the two-component form of the K-G equation 

   i!∂tΨ= Ĥ Ψ  is employed [11].		Here 2 2
3 2 3

ˆ ˆ ˆ ˆ ˆ( / ) ( ) / 2H e c i m e mc eVτ τ φ τ= − + + + +P A  is the 

Hamiltonian operator, P̂  is the momentum operator, e  and m  are the electronic charge and 

mass, respectively, c  is the speed of light in vacuo, ( )V r  is the Coulombic potential due to the 

nucleus, ( , )φ A  are the electromagnetic scalar and vector potentials, 1 2 3ˆ ˆ ˆ( , , )τ τ τ are the Pauli 

matrices and 
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 is a two-component state vector defined in terms of the solution ψ  of 

the second-order K-G equation  by    ϕ ≡ 1
2 (ψ + i!ψ 0 / mc2 ) ,    χ ≡ 1

2 (ψ − i!ψ 0 / mc2 )  and 

   ψ
0 ≡ [∂t + ie(φ +V ) / !]ψ .  The charge density is given by 

2 2 †
3̂( , ) [| ( , ) | | ( , ) | ] ( , ) ( , )t e t t e t tρ ϕ χ τ= − = Ψ Ψr r r r r , where † ( , ) ( *, *)ϕ χΨ =tr  denotes the 

adjoint vector.  Note that the two components of Ψ  represent the charge—and not the spin—of 

the particle [11]. 

The S-matrix 1
ˆ( 1) ( / ) ( , )fi f iS i dt H

∞

−∞
− = − Ψ Φ∫h  expresses the transition probability 

between the initial iΦ  and the final fΨ  state vectors, where 1Ĥ  is the part of the total 

Hamiltonian dependent on the laser field (Supplemental Material [12]).  For hydrogen-like ions a 

Coulombic potential   V (r)=− Ze / r  with atomic number  Z  binds the electron to the nucleus.  If 

the electron starts in the ground state (1s), the initial state vector is  
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where    !ψ 0(r)= C1s (r / r0 ) ( E0 /mc2 )2 −1 e−r /r0 / π r0
3  is the eigenfunction with energy eigenvalue

2 21 1
0 2 4/ ( )E mc Zα= + − ,    α =e2 / !c ,    r0 =!C / 1− (E0 / mc2 )2  is the ground state radius and 

   !C =" / mc  is the reduced Compton wavelength.  Employing the normalization 3 ( )d r eρ =∫ r  

leads to 
2 2

02( / ) 12 2 2 2
1 0 02 ( / ) / [2( / ) 1]E mc
s E mc E mc−= Γ +C  where ( )Γ x  is the gamma-function.  The 
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ionization energy pI  is defined by 2 2
0 / 1 /pE mc I mc≡ − .  Note that   E0  becomes imaginary 

when 1 / 2Zα > , providing the maximum atomic number   Z = 68  for a K-G ‘atom’. 

To lowest order,  
Ψ f  is proportional to the Volkov wavefunction,    

Ψ f ∝ e i Sem /! , where emS  

is the classical action of an electron in a plane electromagnetic wave [17,18].  The correction 

em em CoulombS S S→ +  due to the Coulomb potential of the nucleus can be computed as in [10].  The 

electric field gauge is used to express the vector potential as 

[ cos( / ), cos( / ),0, 0]y yA yE c yE cµ ωξ ωξ= − − , where yE  is the electric field amplitude, 

2 /cω π λ=  is the frequency, λ  is the wavelength and ct xξ = − .  The electric field gauge, 

which emphasizes large distances from the nucleus, is well-suited to the quasi-classical 

approximation of the wavefunction [10, 19].   

 The S-matrix total ionization rate averaged over a wave period is given by (Supplemental 

Material [12]) 
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(1) 

where 3
a SE Eα≡ , 2 3 / | |SE m c e= h is the Schwinger field, 3 2 1( 3 ) (1 )c SE E−≡ Ξ + Ξ  defines a 

characteristic electric field that is nearly equal to the field on the K-shell of a hydrogen-like 

atom,  2 2 2
0 / (1 ) / 1E mc = −Ξ + Ξ  defines Ξ , 2 2 2

0 02 / ( / )E mc E mcν ≈ − + , 

2 21
21 (13 / 8 ) [3 / 2 ] (1257 / 64 45 / 4 3 ) [3 / 2 ]y c y cG q E E q q E E≈ − + + + +  and ( )210 /9 1 / 2pq I mc ν= − + . 

The analysis leading to Eq. (1) makes use of the quasi-static (tunneling), the quasi-

classical and the saddle point approximations.  These are valid when the barrier width 

normalized by the atomic radius is large, 2 3/22 ( / ) / 1p S yI mc E E ? , the relativistic Keldysh 



5	
	

parameter is small, 2 23 / (1 ) / | | 1R ymc eEγ ω≡ Ξ +Ξ = , and the electromagnetic frequency 

normalized by the atomic frequency is small, / 1pIωh = .  In what follows, parameters are 

chosen so that these requirements are satisfied (Supplemental Material [12]).  Wavemechanical 

interference is omitted in Eq. (1).  These same approximations apply to the rate based on the 

imaginary time method.  It should be pointed out that the approximation 2/ 1pI m c =  is made at 

various stages in obtaining Eq. (1)—specially in connection with evaluating the Coulomb effect 

of the nucleus.  Whilst the validity of ITM is claimed to extend to 2/ 1pI m c =  [8], the analytical 

form for the Coulomb correction is only derived for constant, uniform, crossed electric and 

magnetic fields [20].   

Ab initio simulations are not limited by any of the above restrictions.  Three-dimensional 

numerical solutions of the K-G equation were obtained using the model described in [5].  

Controls on numerical errors and validation are discussed there.  The calculations here are 

limited to ½-period of the radiation field to reduce computational expense.  Even then, 3D 

simulations require 162  central processing unit cores, with 13 13 102 2 2× ×  cells and 162  steps.  The 

ionization rate is computed by integrating the charge outside a suitable sphere surrounding the 

core, after one half-period of the radiation, and dividing by / 2e cλ .  The wavelength of the 

radiation is chosen so that the numerical accuracy and computation time are fixed for any chosen 

ionization potential.  The peak electric field is fixed according to the barrier suppression 

ionization threshold (BSI) [21].  The BSI formula depends on the nuclear charge.  The soft core 

potential of the numerical atom is chosen to give the Dirac ground state energy associated with 

this charge.  It turns out that the BSI electric field leads to a barrier width [9] that is sufficiently 

large for the quasiclassical approximation to be applicable (Fig. 1, Supplemental Material [12]).  

Simulations in 2D—where motion along the magnetic field ( z -axis) is completely neglected—

have also been performed.  Simulations in 2D serve several purposes.  First, it is of interest to 

understand the effect of dimensionality on ionization rates.  Second, numerical convergence 

studies in 2D can be used to determine acceptable resolution in 3D.  Finally, simulations in 2D 

can be run over longer time scales.  Convergence was also directly verified in 3D by varying the 

cell size along the z -axis  (Supplemental Material [12]). 
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The characteristic field ( )c pE I  is determined once the ground state energy is chosen.  For 

the ionization energies considered herein 2/ 0.00866, 0.0351, 0.0809, 0.158, 0.259pI mc = , the 

corresponding normalized (peak) electric fields are 

/ ( ) 0.0630, 0.0635, 0.0643, 0.0662, 0.0684y c pE E I = − − − − − , respectively.  Note that the normalized 

electric field is nearly constant across the range of ionization energies. 

Figures 1 (a) and (b) are snapshots of charge density for 2/ 0.259pI mc =  and peak electric 

field / 0.0684y cE E =−  early-on in the interaction ( / 1/ 4c t λ = ) and after ( / 3 / 8ct λ = ) a piece 

has detached from the core, respectively.  Notable features include the manner in which the 

charge density bends in the direction of the radiation momentum, and the spread in the direction 

of the magnetic field.  These highlight the 3D nature of the wavefunction. 

Figure 2 provides the first comparison of the analytically-closed form ionization rates 

(averaged over an optical period) with fully relativistic, 3D ab initio simulations.  In particular, 

the figure shows a comparison of the ionization rate obtained from S-matrix calculations [Eq. (1), 

above], ITM calculations [Eq. (4.2) in Ref. 8] with those from simulations.  The lower abscissa 

in Fig. 2 is the ionization potential 2/pI mc  whilst the upper abscissa gives the values for the 

normalized vector potential | | / ω= ya e E mc .  The ITM and S-matrix rates shown in Fig. 2 differ 

even when 2/ 1pI mc =  because multiphoton ionization is included in the former but not in the 

latter (in the extreme tunneling limit 0Rγ →  the two rates are the same; see Supplemental 

Material [12]).    Note that the ITM rate tracks the simulated rate more closely in the relativistic 

limit.  For comparison simulation results in 2D are also shown.  Additionally the prediction of 

the time-dependent Schrödinger equation (TDSE) is given, in the case   
I p / mc2 =9.60×10−4  where 

the parameters are non-relativistic, using the algorithm of [22].  The result coincides with the 3D 

K-G simulation as expected.  The dipole approximation, a sometime point of contention [1], is 

used in the TDSE simulation, but not in any of the K-G simulations.  

Fig. 2 shows that both theoretical treatments overestimate the 3D ionization rate, while 

coming close to the 2D ionization rate.  The analytical calculations can in principle be performed 

in three dimensions; in practice, however, the z − dimension is treated as an ignorable coordinate.  
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For example, in the calculation of the Coulomb factor, only trajectories with 0z=  are considered.  

This is a likely contributor to the behavior in Fig. 2.  In this connection it should also be recalled 

that in the analytical approaches the electron path associated with the lowest-order action emS  is 

a figure-8 confined to the ,x y − plane.  The central potential associated with the Coulomb 

potential of the nucleus, however, which breaks this symmetry, is only computed as a 

perturbation.   

In order to verify that the simulated ionization rate is computed accurately, it was 

confirmed that the flow of current through the diagnostic surface is insignificant at the time the 

ionized charge is evaluated.  The radius of the diagnostic sphere in all cases was 20 ground state 

radii (see Ref. 23 for a discussion of dependence on radius of diagnostic sphere). 

Simulations make use of the vector potential such that the peak of the electric field occurs 

at 0ϕ = , where  / 2 / / 2 ( ) /c ct x cϕ π ω ξ π ω≡ − + = − + −  is the phase (Supplemental Material 

[12]).  Whilst resolution, accuracy and convergence have been ensured, it has been necessary to 

constrain the duration of the laser pulse in 3D simulations to just half-a-period.  Although such a 

field is physically realizable the derivative of the electric field is non-vanishing at the onset of 

the pulse and it should be remembered that the theory applies to a slowly-varying envelope--even 

though, according to theory, the ionization rate is determined by the conditions at a single phase 

of the radiation field.  Because the whole space-time dependence of the wavefunction falls out of 

the ab initio simulations it is possible to examine the ionization rate ( )w t  as a dynamical quantity 

and to identify its dependence on the pulse shape.  In particular, the current flowing through a 

sufficiently large sphere surrounding the ion is equated with the instantaneous ionization rate.  

Figure 3 displays the instantaneous ionization rate as a function of ϕ  for 2/ 0.259pI mc = .  The 

solid curve in Fig. 3 is for a 3D, ½-period pulse and the long-dash curve is the corresponding 2D 

result.   An important and counter-intuitive feature of both is that the phase at which the peak 

photoelectron current is obtained is earlier in time than the peak of the electric field.  This is not 

a result of ground state depletion, which in all cases treated here is insignificant, and implies that 

for certain parameters, increasing the field strength reduces the ionization rate.  This time-

dependent phenomenon is to be compared with the well-known stabilization phenomenon in 

which an applied field creates a bound state that is more stable against ionization than the usual 
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one [1, 24-26].  In the latter the bound state develops over many radiation periods.  The complex 

behavior for a ½-period pulse is not captured by any of the analytical rates.  To see how the onset 

of the pulse affects this behavior, the dotted curve in Fig. 3 shows the results of a 2D simulation 

in which the pulse builds up over 3 optical periods.  Now it is seen that the time at which the 

peak of the photoelectron current occurs is later than that of the electric field. 

The first comparison of 3D, ½-period relativistic ab initio simulations with analytical S-

matrix and imaginary time method (ITM) tunneling ionization rates reveals the following.  The 

analytical ionization rates overestimate the ionization rate derived from simulations by nearly an 

order of magnitude in the relativistic limit, with the ITM rate tracking the simulated rate more 

closely.  It is also found that 2D simulations overestimate the ionization rate in a similar way, 

suggesting that the limitations of the analyses stem, in part, from neglecting the coordinate 

dimension parallel to the magnetic field.  The simulation results contain temporal information on 

the ionization rate that is not captured by the saddle point approximation used in the analytical 

methods.  In particular, ½-period pulses are found to give unique ionization dynamics.  

Experimentally, measurement of the momentum distribution can shed light on the ionization 

dynamics.  Experimental tests of tunneling ionization rates for 2 1
4/pI mc ≈  require fields on the 

order of 1610 V/m . 
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Figure 1.  Snapshots of charge density †

3̂| | | ( , ) ( , ) |e t tρ τ= Ψ Ψr r  at (a) 1
4/c t λ =  and (b) 

3
8/c t λ = , respectively, obtained from simulations.  Ionization potential 2/ 0.259pI mc =  and 

peak laser electric field normalized to the characteristic electric field / 0.0684y cE E =− .  Panel (a)  

is at the peak of the electric field while for panel (b) the field is reduced by the factor 2 . 
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Figure 2.  Comparison of ionization rates (averaged over an optical period, normalized by /c λ ) 

based on the S −matrix method (dotted), imaginary time method (ITM, dashed), 2-D 

simulations (triangles) and 3-D simulations (circles) of K-G equation. The “x” marks the result 

of a high resolution, axisymmetric, time dependent Schrödinger equation simulation (TDSE), in 

the dipole approximation.  The lower and upper abscissæ show the ionization potential and the 

normalized vector potential, respectively.  [Abscissa values yield the relativistic Keldysh 

parameter 2 23 / (1 ) /R aγ = Ξ +Ξ , where Ξ  is a function of 2/pI mc  and is defined following 

Eq. (1)].  The peak laser electric field, normalized to the characteristic electric field, is nearly 

constant across the plot and listed in the text prior to description of Fig. 1. 
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Figure 3.  Instantaneous ionization rate (normalized by /c λ ) versus the phase of laser pulse for 

ionization potential 2/ 0.259pI mc =  and peak laser electric field normalized to characteristic 

electric field / 0.0684y cE E =− .  With the half-cycle pulse format, in either 2D or 3D, the peak 

photoelectron current occurs before the peak of the electric field (at 0ϕ ≡ ).  A case with finite 

pulse envelope is shown for comparison.  Positive phases can be explained as a delay due to 

finite radius of the diagnostic sphere, but negative phases must be interpreted as a decrease in 

ionization current with an increase in the field.  The ionization fraction (integrated curve) is too 

small for depletion of the bound state wavefunction to play a role. 


