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We measure the transport properties of two-dimensional ultracold Fermi gases during transverse
demagnetization in a magnetic field gradient. Using a phase-coherent spin-echo sequence, we are
able to distinguish bare spin diffusion from the Leggett-Rice effect, in which demagnetization is
slowed by the precession of spin current around the local magnetization. When the two-dimensional
scattering length is tuned to be comparable to the inverse Fermi wave vector k−1

F , we find that the
bare transverse spin diffusivity reaches a minimum of 1.7(6)~/m, where m is the bare particle mass.
The rate of demagnetization is also reflected in the growth rate of the s-wave contact, observed using
time-resolved spectroscopy. The contact rises to 0.28(3)k2F per particle, which quantifies how scaling
symmetry is broken by near-resonant interactions, unlike in unitary three-dimensional systems. Our
observations support the conjecture that in systems with strong scattering, the local relaxation rate
is bounded from above by kBT/~.

Conjectured quantum bounds on transport appear to
be respected and nearly saturated by quark-gluon plas-
mas [1, 2], unitary Fermi gases [3–11], and bad metals
[12, 13]. For many modalities of transport these bounds
can be recast as an upper bound on the rate of local re-
laxation to equilibrium 1/τr . kBT/~, where kB is the
Boltzmann constant and T is temperature [14, 15]. Sys-
tems that saturate this “Planckian” bound do not have
well defined quasiparticles promoting transport [1, 12–
15]. A canonical example is the quantum critical regime,
where one expects diffusivity D ∼ ~/m, a ratio of shear
viscosity to entropy density η/s ∼ ~/kB , and a conduc-
tivity that is linear in T [4, 12, 13]. These limiting be-
haviors can be understood by combining τr with a propa-
gation speed v ∼

√
kBT/m, for example D ∼ v2τr. This

argument applies to ultracold three-dimensional (3D)
Fermi gases, whose behavior in the strongly interact-
ing regime is controlled by the quantum critical point
at divergent scattering length, zero temperature, and
zero density [4, 16, 17]. In such systems, one observes
D & 2~/m [6–8] and η/s & 0.4~/kB [3], compatible with
conjectured quantum bounds.

However in attractive two-dimensional (2D) Fermi
gases, scale invariance is broken by the finite bound-
state pair size, so the strongly interacting regime is no
longer controlled by a quantum critical point [16, 18–
23]. Strikingly, an extreme violation of the conjectured
D & ~/m bound has been observed in the spin dynamics
of an ultracold 2D Fermi gas: an apparent diffusivity of
6.3(8) × 10−3~/m near ln(kFa2D) = 0 [24], where kF is
the Fermi momentum and a2D is the 2D s-wave scatter-
ing length. No similarly dramatic effect of dimensionality
is observed in charge conductivity [12] or bulk viscosity
[25], and such a low spin diffusivity is unexplained by

theory [11, 19].

In this work, we recreate the conditions of Ref. [24],
and study the demagnetization dynamics of ultracold 2D
Fermi gases using both a coherent spin-echo sequence
[8] and time-resolved spectroscopy [7]. We find a mod-
ification of the apparent diffusivity by the Leggett-Rice
(LR) effect [26], however, in disagreement with Ref. [24],
we find that the quantum bound for the spin diffusivity
is satisfied in all conditions accessible to our apparatus.
Near ln(kFa2D) = 0, where the minimum diffusivity is
observed, we quantify the breaking of scale invariance by
measuring the contact, whose magnitude suggests that
the gas is in a many-body excited state during demagne-
tization.

Our experiments use the three lowest-energy internal
states, labeled |−z〉, |+z〉, and |pr〉, of neutral 40K atoms.
Interactions between |− z〉 and |+ z〉 atoms are tuned
by the s-wave Feshbach resonance [27] at 202.1 G, while
|pr〉 atoms remain weakly interacting with |± z〉 atoms,
and any atoms in identical spin states are non-interacting
since the gas is ultracold. An ensemble of 2D systems is
prepared by loading a sympathetically cooled 3D cloud of
|−z〉 atoms into an optical lattice with a period of 380 nm
along the x3 direction [28]. At the final lattice depth of
V0 = 50ER, where ER/~ ' 2π × 8.64 kHz, the 2D sam-
ples are isolated from one another and in near-harmonic
confinement with ω3 ' 2π×122 kHz. The transverse con-
finement with ω1,2 ' 2π×600 Hz is controlled by an opti-
cal dipole trap. Immediately after loading, the 2D clouds
are not rigorously in thermal equilibrium, but thermal-
ization within each plane occurs once demagnetization
commences. The effective initial temperature (T/TF)i

(assigned assuming isentropic loading of the lattice [28])
can be varied between 0.20 and 1.20, where TF ≡ EF/kB ,
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FIG. 1. Magnetization dynamics. (a) The time sequence used
to measure the magnetization dynamics is a simple spin-echo
sequence which allows us to measure (b) the amplitude and
phase (inset) of the ensemble-averaged transverse magnetiza-
tion. Populations are measured with absorption imaging after
Stern-Gerlach separation [28]. Data is shown for θ = 0.25π,
which prepares Mz = −0.71. (c) γ is found from the slope of
φ(th) vs. Mz ln |Mxy/Mxy(0)|.

and EFi = ~2k2
Fi/2m is the Fermi energy of the central

2D system in its initial polarized state. A static magnetic
field gradient B′ along x1 is set to 20.3(2) G/cm unless
stated otherwise.

Transport of local magnetization M = 〈Mx,My,Mz〉
occurs through a spin current Jj that can be decomposed

into a longitudinal component (J
‖
j ‖ M) and a trans-

verse component (J⊥j ⊥M), where bold letters indicate
vectors in Bloch space and the subscript j ∈ {1, 2, 3}
denotes spatial direction. Our measurements follow a
standard spin-echo protocol [29] that initiates a purely
transverse current. In the hydrodynamic regime, J⊥j is

the sum of a dissipative term −D⊥eff∇jM and a reactive
term −γM ×D⊥eff∇jM , where D⊥eff = D⊥0 /(1 +γ2M2) is
the effective transverse diffusivity, and D⊥0 is the bare dif-
fusivity [26]. The parameter γ quantifies the precession of
spin current about the local magnetization, which slows
demagnetization – a phenomenon known as the Leggett-
Rice effect.

Dynamics are initiated by a resonant radio-frequency
(rf) pulse with area θ, which creates a superposition of
|−z〉 and |+z〉 and thus a magnetization Mz = − cos(θ)
and Mxy ≡ Mx + iMy = i sin(θ). The field gradient
causes a twisting of the xy-magnetization into a spiral
texture. The gradient in the direction of M drives a
transverse spin current J⊥1 , which tends to relax Mxy →
0, while Mz is conserved. These dynamics are described
by [26]

∂tMxy = −iαx1Mxy +D⊥eff(1 + iγMz)∇2
1Mxy (1)

where α = B′∆µ/~, and ∆µ is the difference in magnetic
moment between |+z〉 and |−z〉. The solutions of Eq. (1)

depend on a dimensionless time RM th, where th is the
total hold time between the initialization pulse and final
read-out pulse and RM ≡ (D⊥0 α

2)1/3 [28]. In our typical
conditions, R−1

M is on the order of 1 ms.

We measure the vector magnetization using a spin-echo
sequence as shown in Fig. 1(a). A π pulse at time th/2
reverses all Mxy phases, so that evolution in the presence
of B′ causes an untwisting of the spiral magnetization
texture. The final π/2 pulse is applied with a variable
phase lag relative to the initialization pulse. The contrast
in the final populations in |± z〉 is used to determine the
direction φ = arg (Mxy/i) and the magnitude |Mxy| of
the transverse magnetization.

Figure 1(b),(c) shows an example of |Mxy(th)| and
φ(th), for an initial pulse angle θ = 0.25π. The solu-
tion of Eq. (1) for γ 6= 0 gives φ = γMz ln |Mxy/Mxy(0)|
for all th, and thus γ is found by linear regression on
data such as Fig. 1(c). Then, RM (and from it D⊥0 ) is
determined by a nonlinearfit to |Mxy(th)| data, again us-
ing an analytic solution of Eq. (1). Mxy(0) and B′ are
independently calibrated [28].

For the data shown in Fig. 1, at ln(kFia2D) = 0.13(3)
and (T/TF)i = 0.36(4), we find D⊥0 = 2.3(3)~/m and
γ = 0.6(1). These best-fit transport coefficients are un-
derstood as an average both over the ensemble of 2D
systems, and over the dynamical changes in the cloud,
discussed below. At strong interaction when the mean
free path ∼ 1µm is much smaller than the Thomas-Fermi
length and the typical minimal spin-helix pitch ∼ 5µm,
we expect that the trap averaged transport coefficients
are close to the homogeneous values. In this regime the
dynamics are essentially local [30].

We search for conditions that minimize D⊥0 by repeat-
ing this characterization ofMxy(th) at various interaction

FIG. 2. Transverse spin diffusivity. (a) D⊥0 versus interac-
tion strength ln(kFia2D) with (T/TF)i = 0.31(2) (black cir-
cles) and (T/TF)i = 0.21(3) (open squares). Each data point
corresponds to a complete data set as shown in Fig. 1. The
lines are predictions for T/TF = 0.3 by a kinetic theory, as
described in the text. (b) D⊥0 versus initial reduced temper-
ature (T/TF)i at ln(kFia2D) = −0.1(2). (c) Local relaxation
rate τr estimated as D⊥0 /v

2
T . Shaded regions show D⊥0 < ~/m

in (a,b), and τr < ~/kBT in (c). Data are consistent with the
conjectured quantum bound, which would exclude the shaded
areas on all plots.
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strengths and initial temperatures. Figure 2(a) shows
that D⊥0 is smallest when −0.5 . ln(kFia2D) . +0.5,
i.e., where a2D is comparable to k−1

F . This condition can
be understood by considering the 2D scattering ampli-
tude in vacuum: f(k) = 2π/[− ln(ka2D) + iπ/2] [23, 31–
33], which gives a maximal (unitary) cross-section 4/k
at ka2D = 1. Even though our Fermi gas has a distri-
bution of relative momenta k, the average cross-section
at low temperature can be estimated by replacement of
k with kF, due to the logarithmic dependence of f on
the energy of collision. In other words, corrections to
the unitary scattering cross section are only logarithmic
[18–22, 34], which explains the qualitative similarity of
Fig. 2(a) to prior 3D measurements [8].

The lines on Fig. 2(a) show a kinetic theory both with
and without medium scattering (solid and dashed lines,
respectively) calculated in the |M | → 1 limit [11, 30].
The model also accounts for inhomogeneities in the fol-
lowing way: first, the collision integral is solved to com-
pute the transverse spin diffusion time and LR parameter
for a 2D homogeneous system with the same spin density
and temperature as the trap center [11, 35]. Next, these
parameters are used to solve the Boltzmann equation for
the position-dependent spin density in the full trapping
potential for each 2D gas in the ensemble [30]. Finally,
the average magnetization dynamics is analyzed using
Eq. (1). This procedure predicts a minimal D⊥0 slightly
shifted from the observed minimum; but its results agree
well with the increase of D⊥0 in the weakly interacting
regime. This gives us confidence that inhomogeneity ef-
fects are well understood.

The lowest observed diffusivity is D⊥0 = 1.7(6)~/m, at
(T/TF)i = 0.19(3) and ln(kFia2D) = −0.1(2). The effect
of temperature is shown in Fig. 2(b) and by data sets
in Fig. 2(a) taken at two temperatures. In all cases, our
data supports the conjectured bound D⊥0 & ~/m.

Assuming that magnetization perturbations propagate
at vT ∼

√
kBT/m, one can estimate the local relaxation

time τr with D⊥0 /v
2
T . Figure 2(c) compares this time to

the bound ~/kBT . Another estimate of the relaxation
time would use the Fermi velocity vF, as τr ∼ 2D0/v

2
F,

which is the correct scaling for mean free time in imbal-
anced Fermi liquids at low temperature [26, 28, 35]. This
yields τr ∼ 20µs at the minimum observed diffusivity,
again on the order of ~/kBT . In sum, a 2D Fermi gas
with a2DkF ∼ 1 seems to saturate, but not violate, the
Planckian bound τ−1

r . kBT/~ at the lowest tempera-
tures probed here.

Figures 3(b) and 3(c) summarize measurements of γ
across a wide range of interaction strengths and tem-
peratures. There are two implications of these data.
First, system-wide demagnetization is slowed by spin cur-
rent precession. At short th, the solution to Eq. (1) is
|Mxy|/|Mxy(0)| = exp (−D⊥effα

2t3h/12), with an apparent
diffusivity D⊥eff , which is = D⊥0 /(1 +γ2) for a fully polar-
ized cloud. This functional form was used in Ref. [24] to

FIG. 3. Change in the sign of interaction. (a) Fraction
of atoms remaining at th = 3.5 ms. (b) γ versus interac-
tion strength, with (T/TF)i = 0.31(2) (black circles) and
(T/TF)i = 0.21(3) (open squares). (c) γ versus initial re-
duced temperature (T/TF)i, at ln(kFia2D) = −0.1(2). The
change in sign of γ, at ln(kFia2D) ≈ −1, is associated with
the onset of a pairing instability.

determine a minimum “D⊥s ” of 6.3(8)×10−3~/m. In sim-
ilar conditions, we instead find D⊥eff = 7(3) × 10−1~/m.
In both works, diffusivity is observed to be minimal near
ln(kFia2D) = 0, and to double between ln(kFia2D) ≈ 0
and ln(kFia2D) ≈ 1. However, we cannot explain the
hundred-fold difference in scale.

The second implication of γ is to reveal the sign of
the interaction between the spin current and the local
magnetization [26, 36, 37]. When γ < 0, as we ob-
serve for ln(kFia2D) . −1.5 [see Fig. 3(b)], interactions
are repulsive, whereas when γ > 0, as we observe for
ln(kFia2D) & −1.5, interactions are attractive. Associ-
ated with the sign change of γ is the onset of a pair-
ing instability, since both are related to the sign change
of the real part of the low-energy scattering T matrix
[8, 11, 38]. We find indirect evidence for this from atom
loss [see Fig. 3(a)], since Feshbach dimers are a precur-
sor to formation of deeply bound molecules [39], which
are lost from the trap. In 3D, this loss rate is higher on
the repulsive side of unitarity; but in 2D, we observe the
strongest loss on the attractive side, at ln(kFia2D) ∼ 1
[40]. We discuss this further below.

One consequence of demagnetization is a cloud-wide
redistribution of energy. For a 2D harmonically trapped
Fermi gas, the virial relation is [41]

V =
1

2
E +

~2

8πm
C2D (2)

where V is the total potential energy, E is the total en-
ergy, and C2D is the (extensive) 2D contact [41, 42]. Even
though the trap explicitly breaks scale invariance, an
SO(2, 1) dynamical symmetry survives at the mean-field
level [43], but is broken by a quantum anomaly whose
expectation value is C2D [21]. E is conserved in this iso-
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FIG. 4. Contact Dynamics at ln(kFia2D) = 0.35(5) and
(T/TF)i = 0.31(2). (a) C2D is measured after a hold time
th by a pulse detuned by ωrf from the |+z〉-to-|pr〉 transition.
(b) Contact growth for B′ = 25 G/cm. (c) Contact growth for

B′ = 2 G/cm. (d) The best-fit RM = (D⊥0 α
2)−1/3 determined

from contact growth (black points), versus B′. The shaded
region corresponds to RM with D⊥0 < ~/m. The open point
indicates RM from M dynamics at 20 G/cm. The dashed line
shows the best-fit diffusivity D⊥0 = 1.1(1)~/m.

lated system, however C2D increases from zero for the
non-interacting initial state to a finite positive value for
the final state. This implies that V must also increase,
which in turn dictates an increase in the rms cloud size:
V/N = 1

2m(ω2
1〈x2

1〉+ ω2
2〈x2

2〉).
Using rf spectroscopy, we measure C2D throughout the

demagnetization dynamics. The protocol is as described
in Ref. [7] and depicted in Fig. 4(a). The dynamics are
initiated with a θ = π/2 pulse and the sample is probed
with a spectroscopic pulse that couples the states |+z〉 and
|pr〉 after a hold time th. The transfer rate of population
to state |pr〉 is measured as a function of the detuning
ωrf from the bare spin-flip resonance, and is known to
scale with C2Dω

−2
rf in the limit ωrf � EF [34, 44–46]. We

compensate for final-state interactions between the |pr〉
atoms and |± z〉 atoms in our analysis [28, 34, 47].

At ln (kFfa2D) = 0.00(5) we find that the contact rises
from zero to C2D/N = 0.28(3)k2

Ff , where kFf
2 = kFi

2/2
after complete depolarization. Using Eq. (2), one finds
V − E/2 = 0.022(2)EFf per particle. In contrast, for a
3D gas at unitarity, contribution of the contact to the
virial is zero: V − E/2 is proportional to C3D/a3D, and
goes to zero when a−1

3D → 0.
A final thermodynamic transformation accompanying

demagnetization is a temperature rise due to the combi-
nation of increased spin entropy and decreased occupa-
tion of the Fermi sea [48]. For an initial temperature of
0.3(1)TFi and a π/2 pulse, we observe Tf = 0.7(2)TFf

near ln (kFfa2D) = 0. Due to the released attractive in-
teraction energy, this temperature rise is larger than the
Tf/TFf − Ti/TFi ≈ 0.25 one would expect from demagne-

tization of an ideal gas. However the temperature rise is
three times smaller than the Tf/TFf−Ti/TFi ≈ 2.2 that is
predicted by matching initial energy and number to the
equilibrium 2D equation of state [49–51].

One interpretation of these observations is that few
or no dimers are formed during demagnetization. This
is certainly true when a2D < k−1

F , where the system is
not a dimerized superfluid as it would be in the ground
state. But even when a2D ∼ k−1

F , measurements of T
and C2D suggest that the system remains in the upper
energetic branch. The value of C2D/Nk

2
F we observe is

roughly twenty times smaller than the contact strength
in an equilibrium mixture at ln (kFa2D) = 0 [46, 49].
The equilibrium contact is primarily due to a mean-field
dimer contribution C0 ≈ 4Nk2

F . Without dimers, the
contact in the upper branch would be due to short-range
correlations of unbound atoms, and in fact the value we
observe is comparable to C2D − C0 in the lower branch
[52]. Unlike in 3D, the dimer binding energy in 2D is
greater than EF at the Feshbach resonance, so that an
attractive upper branch is energetically well defined.

Figures 4(b),(c) show the typical dynamics we observe
when measuring C2D(th). Due to Pauli exclusion, we can
use such data to infer magnetization dynamics: pairs
of fermions must have a singlet wave function to inter-
act through an s-wave contact interaction. The singlet
fraction can be no larger than 1 − |M |, and would be
(1 − |M |2)/4 for uncorrelated spins [7, 53, 54]. For the
π/2 initialization pulse performed here, |M | = |Mxy|
since Mz = 0. A direct comparison between M and
C2D at B′ = 20 G/cm (see [28]) shows a correlation that
lies between these two limits: C2D/N is proportional to
1 − |Mxy(th)|1.4(2). This form with γ = 0.71 is used to
fit C2D data for a variety of gradients [see Fig. 4(b),(c)]
and extract RM .

Across the experimentally accessible gradients B′,
Fig. 4(d) shows a range of RM from 4.4(2) × 102 s−1 to
2.9(2) × 103 s−1. Throughout, RM scales with α2/3 (see
dashed line) and can be explained by a single diffusivity
D⊥0 = 1.1(1)~/m. This verifies that the microscopic D⊥0
is independent of B′ across the accessible range, and thus
independent of the pitch of the spin helix. The compa-
rable magnitude of D⊥0 determined by two measurement
techniques is also a reassuring check on the fidelity of
the spin-echo sequence used in M measurements, since
the measurement of C2D does not rely upon successful
rephasing of the spins at the echo time.

In sum, we observe quantum-limited spin transport
in 2D Fermi gases when a2D is tuned to be compara-
ble to k−1

F . We find that the conjectured lower bound
D⊥0 & ~/m is respected for all interaction strengths, tem-
peratures, and applied field gradients accessible to our
apparatus. This supports the generality of the bound
τ−1
r . kBT/~ beyond quantum critical systems, since

the finite C2D observed in this system signifies a broken
scaling symmetry near unitarity.
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