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We report correlation measurements on two 9Be+ ions that violate a chained Bell inequality
obeyed by any local-realistic theory. The correlations can be modeled as derived from a mixture of
a local-realistic probabilistic distribution and a distribution that violates the inequality. A statistical
framework is formulated to quantify the local-realistic fraction allowable in the observed distribu-
tion without the fair-sampling or independent-and-identical-distributions assumptions. We exclude
models of our experiment whose local-realistic fraction is above 0.327 at the 95 % confidence level.
This bound is significantly lower than 0.586, the minimum fraction derived from a perfect Clauser-
Horne-Shimony-Holt inequality experiment. Furthermore, our data provides a device-independent
certification of the deterministically created Bell states.

Recently several groups have reported loophole-free
tests of local realism with Bell’s theorem [1], rejecting
with high confidence theories of local realism [2–4]. While
these experiments falsify the idea that nature obeys lo-
cal realism, they are limited in the extent to which their
data differs from local realism. Chained Bell inequality
(CBI) [5] experiments can show greater departures from
local realism in the following sense: Elitzur, Popescu,
and Rohrlich [6] described a model of the distribution of
outcomes measured from a quantum state as a mixture of
a local-realistic distribution, which obeys Bell’s inequal-
ities, and another distribution that does not. Following
their convention, we call these distributions “local” and
“non-local.” According to Ref. [6], a probability dis-
tribution P for the outcomes of an experiment can be
written as

P = plocalP
L + (1− plocal)PNL, (1)

where PL represents a local joint probability distribution
(a “local part”) and PNL represents a non-local distri-
bution, with plocal as the weight of the local component
bound by 0 ≤ plocal ≤ 1. For an ideal Clauser-Horne-
Shimony-Holt (CHSH) Bell inequality experiment where
two physical systems (usually particles) are jointly mea-
sured with four different measurement settings [7], the
lowest attainable upper bound on the local content plocal
in any quantum distribution is ∼ 0.586 [8, 9]. In princi-
ple, this bound can be lowered to zero by using a chained
Bell inequality experiment.

As indicated in Fig. 1, CBI experiments are similar to
CHSH-type experiments, but involve more measurement
settings. During each trial, a source that may be treated
as a “black box” emits two systems labeled a and b, re-
spectively. The experimentalist records the measurement
outcomes after choosing a pair of measurements to per-
form separately on a and b. We use the symbols ak, bl
to denote the respective measurement settings and akbl
for the pair. The latter is usually simply referred to as
“the settings” or “the setting pairs”. There is a hierarchy

in which the Nth CBI experiment involves 2N different
settings. The N = 2 CBI experiment is equivalent to
the CHSH Bell inequality experiment. The settings for
general N are chosen from the set

Z = {a1b1, a1b2, a2b2, a2b3, . . . , aN−1bN , aNbN , aNb1}.
(2)

Each local measurement has a binary outcome of B for
“bright” or D for “dark” (Fig. 1). The outcome of
the trial is recorded as c(x, y) = 1 if x = y or 0 if
x 6= y, where x is the outcome from system a and y
is the outcome from system b. The probability to ob-
tain c(x, y) = 1 may depend on the choices ak and
bl, so we define that probability to be the correlation
C(ak, bl) = P (BB|akbl) +P (DD|akbl), where P (xy|akbl)
is the probability that system a yields measurement out-
come x and system b yields measurement outcome y when
the setting pair is akbl. We define the chained Bell pa-
rameter to be:

IN = C(a1, b1) + C(a1, b2) + C(a2, b2) + ...

..+ C(aN , bN ) + (1− C(aN , b1)) . (3)

If the experiment is governed by a local hidden variable
model, then the CBI IN ≥ 1 must be satisfied [5]. Note
that IN can be estimated using only the record of the
settings akbl and outcomes c(x, y), without knowledge
of the mechanism of the source. It was shown in Ref.
[8] that the chained Bell parameter IN is always an up-
per bound on plocal. In fact, IN is a least upper bound
for plocal under the assumption that the distributions are
non-signaling, in the sense that each party’s measure-
ment outcomes do not depend on the other party’s set-
ting choice [10]. In the limit of N →∞ and with perfect
experimental conditions, CBI experiments could be used
to show that plocal → 0, demonstrating complete depar-
ture from local realism.

Similar to a CHSH-type experiment, a CBI experiment
may be subject to “loopholes” [11, 12] that, in princi-
ple, allow local systems to show violation of the inequal-
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FIG. 1. (a) Illustration of a single trial in a Bell inequality
experiment. To begin, a source creates two entangled sys-
tems a and b, here two 9Be+ ions. After choosing this trial’s
measurement settings ak and bl, each ion’s state is rotated by
an amount corresponding to its settings (which is controlled
with classical variables). Then, a standard fluorescence based
measurement in a fixed basis is applied to each ion. This is
equivalent to choosing the measurement basis for the state
that is present before the measurement settings are applied.
Each system’s measurement outcome is labeled B for “bright”
or D for “dark”, corresponding to the observation of fluores-
cence or not. From the joint measurement we record “c =
1” if the outcomes are the same and “c = 0” if they are not.
(b) “Chaining” of the measurement settings for the Nth CBI
experiment. The measurement settings can be visualized as
a chain where akbk and ak+1bk+1 are linked by akbk+1, and
the chain is closed by the settings aNb1. Example settings
ak and bl are highlighted in red. The CHSH Bell inequal-
ity experiment corresponds to the special case of N = 2. A
full experiment involves many trials with different choices for
measurement settings.

ity. These loopholes arise when one must rely on various
supporting assumptions that are made in the design and
execution of the experiments, but which cannot be abso-
lutely verified. For example, if the setting choice for a can
be communicated to b (or vice-versa), the “locality loop-
hole” is opened. Ensuring space-like separation between
the choices and remote measurement events closes this
loophole [13]. The “detection loophole” [5, 14] is opened
by making the fair-sampling assumption, which says that
a subset of the data can be used to represent the entire
data set. This assumption is often used when some tri-
als fail to produce outcomes due to inefficient detectors.
High efficiency detectors are required to close the detec-
tion loophole and observe violation of the inequality [15].
The minimum detection efficiency required to close the
detection loophole for the Nth CBI experiment is given
by Ref. [15] as

ηmin(N) =
2

N
N−1cos( π

2N ) + 1
, (4)

assuming that the measurement efficiencies on a and b
are equal and that a maximally entangled state is mea-

sured. This emphasizes the importance of high detection
efficiency in large N CBI experiments. If the analysis of
the data assumes that the outcomes of the trials are inde-
pendent and identically distributed (i.i.d.), the “memory
loophole” is opened [16]. For example, one way to de-
termine IN is by running each of the CBI setting pairs
akbl for a total number of Mk,l trials respectively and
calculating

C(al, bk) =

∑Mk,l

i=1 c(xi, yi)

Mk,l
, (5)

(where i indexes the trials) to estimate each C(al, bk)
term in Eq. (3). This analysis requires the i.i.d. assump-
tion for standard error estimates to be valid. The mem-
ory loophole can be closed by applying appropriate anal-
ysis techniques to an experiment that uses randomized
settings for each trial [17].

Previous experiments on the CBIs employed entangled
photon pairs [9, 18–20]. The lowest yet reported upper
bound on plocal is approximately 0.126 for N = 18 [9], but
this value is based on postselection for coincidences. All
previous CBI experiments prior to our work with N ≥ 3
are open to locality, detection and memory loopholes.

Here, with a pair of atomic ions, we experimentally
put an upper bound on plocal by measuring IN with near
100 % detection efficiency. The measurement outcomes
of every trial in each experiment are recorded and used to
determine IN , so the detection loophole is closed, as first
incorporated in a CHSH Bell inequality experiment [21].
Furthermore, we address the memory loophole in aN = 6
CBI experiment by employing uniformly random settings
and developing a statistical analysis technique that does
not require the assumption that trials are i.i.d. However,
with each ion’s measurement inside the lightcone of the
event where the other ion’s setting choice is made, we do
not close the locality loophole. In a CBI experiment us-
ing atomic systems, the locality loophole could be closed
by connecting distant ion traps with photonic links as
demonstrated in [2, 22, 23].

Two beryllium ions (9Be+) are confined and aligned
along the axis of a linear Paul trap by applying a com-
bination of radio frequency (RF) and static potentials
[24] (see Fig. 2). This trap features segmented control
electrodes allowing ions to be confined in different wells
by applying controlled potentials [25]. The ions can be
confined together in a single harmonic well, or separately
confined in different locations along the trap axis. Time
varying potentials are applied to the control electrodes
to deterministically separate ions and transport them be-
tween different locations [25, 26].

The two states of the ions are encoded in the two elec-
tronic ground-state hyperfine levels |F = 2,mF = 0〉 =
|↓〉 and |F = 1,mF = 1〉 = |↑〉, where F and mF are
the total angular momentum and its projection along the
quantization axis provided by an external magnetic field
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FIG. 2. Layout of the relevant segmented trap electrodes.
Each CBI experiment begins with one ion located in zone
E and the other in zone E ′. The blue dots, which indicate
the ions, are overlaid on a photograph showing the trap elec-
trodes (gold). By transporting the ions in and out of zone
S, we individually implement settings and measure each ion
sequentially (details in supplemental material). The ions are
separated by at least ∼ 340 µm when settings akbl are ap-
plied, a distance much larger than the laser beams size of ∼
25 µm.

of ' 0.0119. For details, see Ref. [24] which includes an
energy level diagram. The frequency splitting of the two
states is approximately 1.2 GHz and is first-order insen-
sitive to magnetic field fluctuations [27]. With coherent
operations based on stimulated-Raman transitions (with
laser wavelengths near 313 nm), we can deterministically
create the entangled states

|Φ+/−〉 =
1√
2

(|↑↑〉 ± |↓↓〉) , (6)

with high-fidelity, where the notation |↑↑〉 denotes the
two ion state |↑〉a|↑〉b [24] (see supplemental material for
details on the Bell state generation). States |Φ+/−〉 are
created with the ions are located in zone S (Fig. 2). This
is followed by separating the ions and placing them in two
separate potential wells, one located in zone E and one
located in E ′, separated by ∼ 340 µm. These processes
represent the source in Fig. 1 and prepare the two ions
a and b for the measurement of IN described below.

To implement the different settings, we illuminate the
ions with stimulated-Raman-transition-inducing laser
beams controlled with classical parameters. Ideally, they
can be described as the following rotations:

|↑〉r →
1√
2

(
|↑〉r − ie

−irk |↓〉r
)
,

|↓〉r →
1√
2

(
|↓〉r − ie

irk |↑〉r
)
, (7)

where r = a or b to represent each of the ions, and the
angles rk = ak or bk are

ak =
(2k − 1)π

2N
, (8)

bl = − (l − 1)π

N
, (9)

which are chosen from Eq. (2). These angles mini-
mize the expected value of IN if the produced entangled
state is ideal [28]. These rotation operations are imple-
mented by setting the amplitude and phase of the Raman
laser beams with an acousto-optic modulator (AOM).
The radio-frequency electric field driving the AOM is
produced by a field-programmable gate array (FPGA)-
controlled direct digital synthesizer. The classical vari-
able is the phase of the oscillating field that implements
a particular setting ak. Analogous operations are applied
to ion b with setting bl. The laser beams implementing
these rotations have a beam waist of ' 25 µm and are
focused at zone S. They are applied sequentially to one
of the ions in zone S while the other ion is located in a
different well; each ion is transported in and out of zone
S to interact with the laser beams (see supplemental ma-
terial).

After the settings rotations are applied, the state of
each ion, |↑〉 or |↓〉 is measured sequentially in zone S with
a state-dependent fluorescence technique [29]. When the
detection laser beam is applied, we detect on average
30 photon counts on a photomultiplier tube if the ion
is in the |↑〉 state and about 2 counts if the ion is in
the |↓〉 state. Our photon collection apparatus images
ions in zone S with a field of view of approximately 50
µm. We label a measurement outcome “dark” (D) if 6
or fewer photons are observed and “bright” (B) if more
than 6 are observed. Thus we obtain the 4 possible joint-
measurement fluorescence outcomes BB, BD, DB, DD,
for each trial. These outcomes correspond to the states
|↑↑〉, |↑↓〉, |↓↑〉, and |↓↓〉. Among previous CHSH-type
experiments with trapped ions [21–23, 30], only two were
performed with ions manipulated and measured in indi-
vidual wells [22, 23]. In those experiments the ions were
confined in two traps separated by about ∼ 1 m.

When the state |Φ+〉 is prepared, we compute an es-

timate ÎN of IN as shown in Eq. (3) with Eq. (5) used
to estimate the C(ak, bl) terms. For the state |Φ−〉 we
instead use anticorrelations and compute

ÎAN = A(a1, b1) +A(a1, b2) +A(a2, b2) + ...

..+A(aN , bN ) +
(
1−A(aN , b1)

)
, (10)

where A(ak, bl) = 1 − C(ak, bl). The measured ÎAN is

equivalent to ÎN for the purpose of quantifying plocal.

We performed the experiment for the CBI parame-
ter N ranging from 2 to 15. Two different data sets,
collected ∼ 6 months apart, were obtained. Figure 3
shows the experimentally obtained CBI parameter ÎN as
a function of N . The data points in Fig. 3 were ob-
tained with multiple sequential trials having the same
settings, then iterated across different choices of set-
tings. The error bars are calculated under the assump-
tion that the settings and outcomes are i.i.d. The error

bars indicate the propagated standard errors
√∑

j ε
2
j ,
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FIG. 3. Experimentally measured values ÎN and ÎAN as a
function of N . Data represented by black and blue dots are
obtained with two 9Be+ ions, with black (blue) dots corre-
sponds to tests on |Φ+〉 (|Φ−〉). These two data sets were
obtained approximately six months apart. The difference be-
tween them and the finer features within each data set are
probably due to miscalibrations and our inability to repro-
duce exact experimental conditions. Orange squares are data
from tests on |Φ+〉 prepared on a 9Be+-25Mg+ pair. The
red cross represents the (95 % confidence level) upper bound
p̂ = 0.327, estimated using our statistical framework, which
does not require the i.i.d. assumption. The gray circles indi-
cate the lowest IN achievable with perfect CBI experiments
using a maximally entangled state. As N increases from 2,

the experimentally measured values of ÎN for each different
pair of ions reach a minimum and then trend upward. This is
due to errors that accumulate during experiments with higher

values of N . In general, ÎN becomes more sensitive to errors
and noise as N increases [15].

with εj =
√
χj(1− χj)/(Mj − 1) where Mj is the num-

ber of trials (here Mj ∼ 2, 000) and χj is the averaged
correlated or anticorrelated outcome for the jth setting
pair. The Î2 experiment took a total of ∼ 5 minutes,
the one for Î15 ∼ 20 minutes. The lowest value of ÎN is
obtained for the N = 9 data run, which corresponds to
Î9 = 0.296(12).

To remove the i.i.d. assumption, we performed an
N = 6 experiment employing uniformly random settings.
The settings were chosen with a pseudo-random genera-
tor during run time. For each randomly chosen setting
pair, blocks of 100 trials with identical settings were car-
ried out before changing to the next randomly selected
setting pair. This procedure was repeated 1, 398 times.
This is the number of blocks we obtained in a single day’s
experiment run and was deemed sufficient for our statis-
tical analysis to be reasonably informative. While we
could have run one trial per settings choice, this would
have implied a low data collection efficiency since a sin-
gle trial takes ∼ 10 ms, but reprogramming the FPGA
controlling the apparatus to change the settings takes
∼ 4 s. This N = 6 experiment took ∼ 7 hours. Although
100 outcome pairs are available for each random settings

choice, only a single trial from each block should be an-
alyzed when not making the i.i.d. assumption. We chose
ahead of time to use the center trial (the 50th trial of
each block) in our analysis. The choice of the 50th trial
was arbitrary; any other choice would have also produced
a valid analysis. To enable this choice, we assume that
the 50th trial does not depend on the earlier trials in each
block. Collisions between ions and background gases can
cause the ions to overheat or be ejected from the poten-
tial well. To reduce the consequences of these effects, we
checked the status of the ions with fluorescence measure-
ments. If the measurements made prior to the beginning
of each trial do not detect a problem with the ions, that
trial was “heralded” and included in the analysis (see
supplemental material). Because we use only informa-
tion gained prior to the beginning of a trial to herald
that trial, the detection loophole is not opened. When
studying the 50th trial of each block, 1,361 trials were
therefore analyzed.

A memory-robust statistical framework is formulated
to infer a bound on the maximum local content in the
observed correlation. For |Φ+〉, we draw inferences based
on the statistic Ti(x, y, ak, bl), defined as

Ti(x, y, ak, bl) =


0 if x = y and (ak, bl) 6= (aN , b1)

1 if x 6= y and (ak, bl) 6= (aN , b1)

1 if x = y and (ak, bl) = (aN , b1)

0 if x 6= y and (ak, bl) = (aN , b1)

,

(11)
where x and y are the measurement outcomes from the
two ions when they are measured with settings akbl cho-
sen from Eq. (2) during trial i. As a trial-by-trial func-
tion of both settings and outcomes, Ti is more suitable for
memory-robust statistical analysis than a statistic (such
as C) that is normalized by the number of times each mea-
surement setting occurs [16]. The expectation value of Ti
is 1 − IN/(2N), so intuitively larger values of

∑1,361
i=1 Ti

should correspond to a lower local fraction PL in Eq. (1).
In the presence of memory effects, it is possible for the
proportion of local states to change over time. Hence
we model each trial i as having a probability pilocal of
generating a local state, and derive a one-sided 1 − α
confidence interval [0, p̂] for pmin

local := mini p
i
local, the min-

imum local content that can occur over the course of the
experiment. The probability of seeing a

∑n
i=1 Ti statis-

tic as large or larger than that actually observed for a
model with pmin

local = q is less than or equal to the same
probability for an i.i.d. model with pilocal = q for all i.
From this, the desired confidence interval can be obtained
by inversion of hypothesis-test acceptance regions (§7.1.2
of [31]); see the supplemental material. In particular, this
implies that we can take p̂ to be the largest value x for
which a binomial random variable with n = 1, 361 trials
and probability of success (2N −x)/2N yields a value as
great or greater than the observed value of

∑
i Ti with a
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probability of at least α.
We compute one-sided pmin

local confidence intervals of
[0, 0.327], [0, 0.366], and [0, 0.413] for confidence levels of
0.95, 0.99, and 0.999, respectively, using the 50th trial
in each block of the randomized N = 6 experiment.
Randomization of settings and the use of this statisti-
cal framework also remove any concern that experimen-
tal drifts might erroneously lead to a lower estimate of
pmin
local.

The values of Î6 and p̂ obtained when we analyzed the
1st through 100th trial in each block, representing the I6
estimates and confidence intervals that would have been
obtained with a different choice of representative trial,
are shown in the supplemental material.

Using the same apparatus, we also perform the CBI ex-
periment on a pair of 9Be+ and 25Mg+ ions; see Ref. [32]
and supplementary material for details. The computed
ÎN values are shown as orange squares in Fig. 3.

Our lowest measurement of Î2 corresponds to a CHSH
inequality parameter (sum of correlations) of BCHSH =
2.80(2). Under local-realism BCHSH = 4 − 2I2 ≤ 2.
A consequence of the near-maximal violations of the
CHSH inequality (Bmax

CHSH = 2
√

2 ' 2.82) provides a
black box certification of the created entangled states
[33–35]. Such a characterization with minimal assump-
tions on our physical system and measurements is for-
malized by the self-testing framework [36, 37]. Using
the method of Ref. [34], we infer a self-tested Bell-state
fidelity lower bound (at the 95 % confidence level) of
∼ 0.958. This is a record self-tested Bell-state fidelity
with the detection loophole closed; see supplementary
material for comparison with the experiments reported
in Refs. [21–23, 30, 32, 38–43].

The apparatus used here is designed for the imple-
mentation of quantum information processing (QIP) with
trapped-ions in a scalable system of trap zones in an ar-
ray [44, 45]. The basic QIP elements incorporated for
the realization of the CBI experiment described here in-
clude high-fidelity state preparation, manipulation, and
measurement on individual qubits with long coherence
times, transport between zones, and high-fidelity two-
qubit gates. Therefore, CBI experimental results can
also be regarded as a useful benchmark toward the goal
of general purpose scalable QIP.

Our experiment is the first to report violation of CBIs
for N ≥ 3 while closing the detection loophole. Also, it
is the first CBI for N ≥ 3 experiment that uses massive
particles. We infer the presence of distributions whose
local fraction was less than 0.327 at the 95 % confidence
level. Furthermore, for the special case of the CHSH in-
equality, our self-tested fidelity appears to be the highest
for a deterministically created Bell state.
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