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We argue that the correct definition of the electric current in the chiral kinetic theory for Weyl
materials should include the Chern–Simons contribution that makes the theory consistent with the
local conservation of the electric charge in electromagnetic and strain-induced pseudoelectromagnetic
fields. By making use of such a kinetic theory, we study the plasma frequencies of collective modes
in Weyl materials in constant magnetic and pseudomagnetic fields taking into account the effects
of dynamical electromagnetism. We show that the collective modes are chiral plasmons. While the
plasma frequency of the longitudinal collective mode coincides with the Langmuir one, this mode
is unusual because it is characterized not only by oscillations of the electric current density, but
also oscillations of the chiral current density. The latter are triggered by a dynamical version of the
chiral electric separation effect. We also find that the plasma frequencies of the transverse modes
split up in a magnetic field. This finding suggests an efficient means of extracting the chiral shift
parameter from the measurement of the plasma frequencies in Weyl materials.

PACS numbers: 71.45.-d, 03.65.Sq

Introduction.— The study of the fundamental proper-
ties of magnetized relativistic matter attracted a lot of
attention in recent years. The physical systems in ques-
tion include the plasmas in the early Universe [1] and rel-
ativistic heavy-ion collisions [2, 3], degenerate states of
dense matter in compact stars [4], and a growing number
of recently discovered three-dimensional Dirac and Weyl
materials [5–7]. To large extent, the recent increased ac-
tivity in the studies of magnetized relativistic matter is
driven by the hope of detecting macroscopic implications
of quantum anomalies. One of such implications is the
celebrated chiral magnetic effect (CME) [8], which has
been detected indirectly in the quark-gluon plasma cre-
ated in heavy-ion collisions (for a review, see Ref. [3]),
as well as in Dirac semimetals [9]. Note that the inter-
pretation of the heavy-ion experiments is not without a
controversy [10].

The search for macroscopic implications of quantum
anomalies is greatly facilitated by the recent discovery of
Dirac and Weyl materials, whose low-energy quasiparti-
cle excitations are described by relativistic-like equations.
Indeed, unlike most forms of truly relativistic matter,
these novel condensed matter materials open the possi-
bility for revealing and testing many anomalous effects in
magnetized matter in table-top experiments under con-
trolled conditions. Moreover, they may even allow for
modeling phenomena that are impossible in relativistic
physics. A specific example is provided by a background
pseudomagnetic (or, equivalently, axial magnetic) field
B5, which can be effectively produced by a mechanical
strain in Dirac and Weyl materials [11–14]. In essence,
the pseudomagnetic field B5 resembles the ordinary mag-

netic field B, but acts on opposite chirality quasiparti-
cles so as if they had opposite charges. In the case of the
Dirac semimetal Cd3As2, for example, the strength of
the strain-induced pseudomagnetic field could range from
about B5 ≈ 0.3 T in twisted nanowires [14] to B5 ≈ 15 T
in bended thin films [15]. Similarly, a pseudoelectric field
E5 can be generated by time-dependent deformations.

Collective excitations are simple, but informative
probes of plasma properties [16]. It is natural to ask,
therefore, whether such modes in chiral plasmas can be
affected by quantum anomalies. The authors of Ref. [17]
proposed that the chiral anomaly implies the existence of
a new type of collective excitation, i.e., the chiral mag-
netic wave (CMW), that originates from an interplay of
the chiral and electric charge density waves. In this study,
we will investigate the collective modes in Weyl materi-
als, using the framework of the chiral kinetic theory and
a proper treatment of dynamical electromagnetism.

The central idea of this Letter is to use the correct
definition of the electric current in the chiral kinetic the-
ory for Weyl materials with strain-induced pseudoelec-
tromagnetic fields. As we show, the current should nec-
essarily include the Chern–Simons contribution, which
is also known as the Bardeen-Zumino polynomial [18].
Such a correction restores the local conservation of the
electric charge in the case of general electromagnetic and
pseudoelectromagnetic fields. In addition, this topolog-
ical term affects the properties of collective modes. For
example, their plasma frequencies acquire a dependence
on the chiral shift parameter, i.e., the momentum-space
separation between the Weyl nodes.

Model.— The chiral kinetic theory is a semiclassical
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theory, which describes the time evolution of the one-
particle distribution functions fλ for the right- (λ = +)
and left-handed (λ = −) fermions. In the collisionless
limit (assuming that the frequency of collective excita-
tions ω is much larger that inverse relaxation time 1/τ),
the kinetic equations are given by [19, 20]

∂fλ
∂t

+

[

eẼλ + e
c (v ×Bλ) +

e2

c (Ẽλ ·Bλ)Ωλ

]

·∇pfλ

1 + e
c (Bλ ·Ωλ)

+

[

v + e(Ẽλ ×Ωλ) +
e
c (v ·Ωλ)Bλ

]

·∇rfλ

1 + e
c (Bλ ·Ωλ)

= 0, (1)

where Eλ = E + λE5 and Bλ = B + λB5 are effec-
tive electric and magnetic fields for fermions of chirality
λ, Ωλ = λ~p/(2p3) is the Berry curvature [21], p ≡ |p|,
Ẽλ = Eλ−(1/e)∇rǫp, and the factor 1/[1+e(Bλ ·Ωλ)/c]
accounts for the correct phase-space density of chiral
states in a (pseudo-)magnetic field [22]. By making use
of the fermion dispersion relation, valid up to the linear
order in the background magnetic field Bλ,

ǫp = vF p [1− (e/c)(Bλ ·Ωλ)] , (2)

we derive the quasiparticle velocity v = ∇pǫp, i.e.,

v = vF
p

p

[

1 + 2
e

c
(Bλ ·Ωλ)

]

−
evF
cp

Bλ (p ·Ωλ) . (3)

Here vF is the Fermi velocity.

The equilibrium distribution functions for chiral
fermions are given by the standard Fermi-Dirac distri-
butions

f
(eq)
λ =

[

e(ǫp−µλ)/T + 1
]−1

, (4)

where T is the temperature (measured in energy units)
and µλ = µ + λµ5 are the effective chemical potentials
for the right- and left-handed fermions. Note that µ and
µ5 are the electric and chiral chemical potentials, respec-

tively. The distribution functions for antiparticles f̄
(eq)
λ

are obtained by replacing µλ → −µλ. In addition, for
antiparticles, one should replace Ωλ → −Ωλ.

The charge and current densities are given by [20]

ρλ = e

∫

d3p

(2π~)3

[

1 +
e

c
(Bλ ·Ωλ)

]

fλ, (5)

jλ = e

∫

d3p

(2π~)3

[

v +
e

c
(v ·Ωλ)Bλ + e(Ẽλ ×Ωλ)

]

fλ

+e∇×

∫

d3p

(2π~)3
fλǫpΩλ, (6)

where the last term describes a magnetization current.

Local charge (non-)conservation.— By using Eqs. (1),
(5), and (6) together with the Maxwell’s equations, one

can easily derive the following continuity equations for
the chiral and electric currents:

∂ρ5
∂t

+∇ · j5 =
e3

2π2~2c

[

(E ·B) + (E5 ·B5)
]

, (7)

∂ρ

∂t
+∇ · j =

e3

2π2~2c

[

(E ·B5) + (E5 ·B)
]

. (8)

The first equation is related to the celebrated chiral
anomaly [23] and expresses the nonconservation of the
chiral charge in the presence of electromagnetic or pseu-
doelectromagnetic fields. Physically, this nonconversion
can be understood as pumping of the chiral charge be-
tween the Weyl nodes of opposite chiralities. The second
equation describes the anomalous local nonconservation
of the electric charge in electromagnetic and pseudoelec-
tromagnetic fields.
The local nonconservation of the electric charge is a

very serious problem. If taken at face value, it would
imply that the electric charge is literarily created out of
nothing. It was suggested in Refs. [13, 14] that it may
correspond to pumping of the charge between the bulk
and the boundary of the system. However, it is unclear
how such a spatially nonlocal process could resolve the
problem.
As we argue below, the resolution of the problem is

much simpler. It lies in the fact that Eqs. (7) and (8)
are the so-called covariant anomaly relations that come
from the fermionic sector of the theory, in which left-
and right-handed fermions are treated in a symmetric
way. Just like in quantum field theory, this is inconsistent
with the gauge symmetry. The correct physical currents,
satisfying the local conservation of the electric charge,
are the consistent currents [24]. A very clear discussion of
these concepts in the framework of a low-energy effective
theory is given in Ref. [25]. Clearly, the same should
apply to the chiral kinetic theory. This means that one
should add the following topological contribution to the
electric four-current density [18, 24, 25]:

δjµ =
e3

4π2~2c
ǫµνρλA5

νFρλ, (9)

where A5
ν = bν + Ã5

ν is the axial vector potential, which
is an observable quantity. Indeed, in Weyl materials,
b0 and b correspond to the energy and momentum-
space separation between the Weyl nodes. On the other
hand, Ã5

ν is expressed through the deformation tensor
and describes strain-induced axial (pseudoelectromag-
netic) fields. [Note that there is also a correction to the
chiral current density, but it contains only pseudoelectro-
magnetic fields [25] and, thus, will not affect the plasmon
properties, discussed later.] In components, Eq. (9) takes
the following form:

δρ =
e3

2π2~2c2
(A5 ·B), (10)

δj =
e3

2π2~2c
A5

0B−
e3

2π2~2c
(A5 ×E). (11)
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For B5 to be nonzero, the axial field Ã5 should depend
on coordinates. We will assume, however, that such a
dependence is weak, i.e., Ã5 in Eqs. (10) and (11) is
negligible compared to the chiral shift b.
As is easy to check, the consistent current Jµ =

(cρ+cδρ, j+δj) is nonanomalous, ∂µJ
µ = 0, therefore, the

electric charge is locally conserved. Note that the consis-
tent current plays an important role even in the absence
of strain-induced pseudoelectromagnetic fields. For ex-
ample, in the equilibrium state with µ5 = −eb0, the first
term in Eq. (11) exactly cancels the corresponding CME
current in j as argued in Ref. [25]. This also agrees with
the analysis based on the band theory of solids [26]. In
addition, the second term in δj correctly captures the
anomalous Hall effect in Weyl materials [27], that other-
wise would be missing in the chiral kinetic theory.
Collective excitations.— By making use of the consis-

tent current, we study the spectrum of collective exci-
tations in the Weyl material in a constant background
field B0,λ ≡ B0 + λB0,5. For the sake of simplicity, we
assume that a static strain-induced pseudomagnetic field
B0,5 is parallel to the magnetic field B0. (We choose
B0 to point in the +z direction.) Note that, in princi-
ple, collective modes could drive dynamical deformations
of the Weyl material, which, in turn, induce oscillating
pseudoelectromagnetic fields E′

5 and B′
5. However, the

corresponding fields are extremely weak and can be safely
neglected in the analysis of the plasmon modes.
Our analysis of the electromagnetic collective modes

follows the standard approach of physical kinetics [16],
albeit generalized to the case of chiral fermions with a
nonzero Berry curvature. As usual, the solution is sought
in the form of plain waves, i.e., E′ = Ee−iωt+ik·r and
B′ = Be−iωt+ik·r, where ω is the frequency and k is
the wave vector. The matter effects are captured by the
polarization vector

Pm = χmlE′l = iJ ′m/ω, (12)

where χml is the electric susceptibility tensor and m, l =
1, 2, 3 are the spatial indices. The dispersion relations of
collective modes follow from the characteristic equation
for the in-medium Maxwell’s equations [16]:

det
[(

n2
0ω

2 − c2k2
)

δlm + c2klkm + 4πω2χlm
]

= 0, (13)

where we included the background refractive index n0. In
the case of the Weyl semimetal TaAs, for example, n0 ≈ 6
[28]. In this Letter, in order to simplify our analysis, we
will neglect the dependence of n0 on the frequency of
light. Also, we will discuss the properties of the collec-
tive modes only in the limit k = 0. The general case with
k 6= 0 will be reported elsewhere. In order to determine
the electric susceptibility tensor, we use the consistent
chiral kinetic theory, which includes the contribution to
the electric current due to the Bardeen-Zumino polyno-
mial given by Eq. (11). The distribution function is taken

in the form fλ = f
(eq)
λ + δfλ, where f

(eq)
λ is the equilib-

rium distribution function (4) and δfλ = f
(1)
λ e−iωt is a

perturbation. To leading linear order in oscillating fields,
the solution to the kinetic equation (1) reads

f
(1)
λ ≃ −i

evF
pω

∂f
(eq)
λ

∂ǫp

{

(p · E)

[

1 +
λ~e(B0,λ · p)

2cp3

]

− i (p · [B0,λ ×E])
evF
cpω

}

. (14)

Similarly to the situation in a magnetized nonrelativistic

plasma [16], the leading-order perturbation f
(1)
λ is pro-

portional to the magnitude of the oscillating electric field.
By making use of this solution, we derive the following
result for the polarization vector:

P =
a0
4π

E′ +
a1
4π

(b×E′) +
a2
4π

(E′ × ẑ), (15)

where ẑ is the unit vector in the +z direction and

a0 = −
n2
0Ω

2
e

ω2
, a1 = −i

2en2
0αvF

πcω~
, (16)

a2 = −i
2en2

0αv
2
F

3πωc

∑

λ=±

[

B0,λµλ

~2ω2
−

B0,λ

4T
F
(µλ

T

)

]

.(17)

Here we introduced the shorthand notations for the cou-
pling constant α = e2/(~vFn

2
0), the Langmuir frequency

Ωe ≡

√

4α

3π~2

(

µ2 + µ2
5 +

π2T 2

3

)

, (18)

and the following function of νλ ≡ µλ/T :

F (νλ) ≡ −T

∫

dp

p

{

∂f
(eq)
λ

∂ǫp
−

∂f̄
(eq)
λ

∂ǫp

}

. (19)

Note that the high- and low-temperature asymptotes of
this function are given by F (νλ) ≃ 0.4νλ for νλ → 0 and
F (νλ) ≃ 1/νλ for νλ → ∞, respectively.
While the first term in Eq. (15) describes the high-

frequency version of the Ohm’s law, the second term
comes from the part of the topological current Eq. (11)
responsible for the anomalous Hall effect [27]. The last
term in Eq. (15) proportional to the background mag-
netic and pseudomagnetic fields describes the usual Fara-
day rotation as well as its anomalous counterpart.
By making use of Eqs. (13) and (15), we obtain the

spectral equation for the collective modes at k = 0

(1 + a0)
{

1 +
[

2a0 + a20 + a21b
2
⊥ +

(

a2 − a1b‖
)2
]}

= 0,

(20)

where we introduced the transverse b⊥ =
√

b2x + b2y and

longitudinal b‖ = bz components of the chiral shift. No-
tice that the spectral equation is explicitly factorized.
The corresponding approximate solutions are

ωl = Ωe, ω±
tr = Ωe

√

1± δΩe/Ωe, (21)
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where

δΩe =
2eαvF
3πc~2

{

9~2b2⊥ +
[2vF
Ω2

e

(B0µ+B0,5µ5)

− 3~b‖ −
vF ~

2

4T

∑

λ=±

B0,λF
(µλ

T

) ]2
}1/2

. (22)

In the absence of the chiral shift, the collective modes
(21) correspond to the longitudinal (E′ ‖ ẑ) and trans-
verse (E′ ⊥ ẑ) waves. Moreover, Eq. (21) means that
the effects of dynamical electromagnetism transform, as
argued in Ref. [17], the CMW into a longitudinal plas-
mon, whose frequency coincides exactly with the Lang-
muir one at linear order in the (pseudo-)magnetic field.
It is interesting to point out that the combined effect
of the pseudomagnetic field B0,5 and the chiral chemical
potential µ5 on the collective modes is similar to that of
the magnetic field B0 and the electric chemical potential
µ. The qualitative dependence of the plasma frequencies
(21) on the magnetic field B0 is presented graphically in
Fig. 1 at fixed values of b⊥ and b‖.

According to the upper panel in Fig. 1, the plasma fre-
quencies of all three collective modes are different when
b⊥ 6= 0. In this case, the smallest splitting occurs at
B0 = 0, where ω+

tr − ω−
tr ≈ δΩe = 2eαvF b⊥/(πc~).

The situation is quite different in the case when b⊥ = 0,
but b‖ 6= 0. This is demonstrated in the lower panel of
Fig. 1. Now, while the three plasmons have generically
different frequencies, one can make them degenerate by
tuning the value of the magnetic field. The corresponding
value of the magnetic filed B⋆

0 , at which the frequency
splitting vanishes, is given by

B⋆
0 = −

4T
[

2vFB0,5µ5 − 3~Ω2
eb‖

]

vF
[

8Tµ− ~2Ω2
e

∑

λ=± F
(

µλ

T

)]

−
B0,5~

2Ω2
e

∑

λ=± λF
(

µλ

T

)

8Tµ− ~2Ω2
e

∑

λ=± F
(

µλ

T

) . (23)

Chiral magnetic plasmons.— It is worth discussing the
chiral features of the collective excitations in more detail.
It appears that these modes, including the longitudinal
one, which describes the CMW with the effects of dy-
namical electromagnetism taken into account, are chiral
plasmons, or rather chiral magnetic plasmons, when a
background magnetic field is present. Their chiral na-
ture is evident from the fact that they are accompanied
by oscillations of not only the electric, but also the chi-
ral current density. The result for the oscillating part of
the electric current density is clear from the polarization
vector if one uses Eqs. (12) and (15). As for the oscillat-
ing part of the chiral current density, it is given by the

ωl
ωtr
ωtr
-
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FIG. 1: (Color online) The dispersion relations of collective
modes given by Eq. (21) at fixed b⊥ = 0.2~Ωe/e (upper panel)
and b‖ = 0.2~Ωe/e (lower panel). The electric chemical poten-

tial equals µ = ~Ωe

√

3π/(4α), B0,5 = 0, and the temperature
is zero.

following expression:

J′
5 = sin (ωt)E

2αn2
0µµ5

3π2~2ω
− cos (ωt)(E× ẑ)

eαn2
0v

2
F

6π2c

×
∑

λ=±

[

λB0,λµλ

~2ω2
−

λB0,λ

4T
F
(µλ

T

)

]

, (24)

which is obtained using Eqs. (6) and (14). It is impor-
tant to emphasize the topological origin of the first term
in Eq. (24), which does not depend on temperature. In
essence, it comes from a dynamical version of the chi-
ral electric separation effect [29]. The second term in
Eq. (24) is related to a generalized Lorentz force.
We would like to note that the predicted frequencies

and the splitting of plasmon frequencies as functions of an
applied strain and/or magnetic field can be easily tested
in experiment. As in the case of usual plasmons, this can
be done by measuring the intensity and the phase shift
of electromagnetic waves transmitted through a thin film
of a Weyl material. The frequencies of transverse modes
could be obtained from the peaks in the real part of opti-
cal conductivity, while the frequency of the longitudinal
mode can be extracted from the energy loss function (e.g.,
see Ref. [30]).
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Depending on the choice of a Weyl material, the esti-
mated frequencies of the chiral magnetic plasmons could
vary a lot. In Weyl semimetals such as NbP and TaAs,
for example, the averaged Fermi velocity is about vF ≈
2 × 107 cm/s [31]. The corresponding Langmuir fre-
quency may vary in a rather wide range between 1 THz
to 100 THz depending on the actual values of the Fermi
energy and temperature. The range of magnitude of the
splitting between the transverse modes is more narrow,

i.e., ω+
tr − ω−

tr ≈ 0.3 b⊥[Å
−1

] THz, where the value of the

chiral shift parameter b⊥ varies from about 4×10−3 Å
−1

(NbAs) to about 3× 10−2 Å
−1

(TaAs) [31].

Conclusion.— As we showed in this Letter, the consis-
tent chiral kinetic theory in Weyl materials should neces-
sarily include the topological Chern–Simons contribution
that ensures the local conservation of the electric charge
in electromagnetic and strain-induced pseudoelectromag-
netic fields. Moreover, as we emphasized, such a term
plays an important role even in the absence of pseudo-
electromagnetic fields. It allows one to correctly describe
the anomalous Hall effect in Weyl materials [27] and to
reproduce the vanishing CME current in an equilibrium
state of chiral plasma [25, 26]. Furthermore, the topo-
logical term also affects the spectra of collective modes.

As demonstrated here, the collective modes in Weyl
materials are the chiral plasmons with interesting prop-
erties. Such modes are associated with the oscillations
of both electric and chiral current densities. This is in
contrast to the ordinary electromagnetic plasmons which
are not connected to the oscillations of the chiral current
density. It is worth mentioning that for the longitudinal
mode, which corresponds to the CMW, these oscillations
are of purely topological origin and are related to a dy-
namical version of the chiral electric separation effect.

While the plasma frequency of the longitudinal mode
coincides with the Langmuir one, the frequencies of the
transverse modes generically split up. The frequency
splitting depends on both magnetic (pseudomagnetic)
field and electric (chiral) chemical potential. As we
showed, the qualitative features of this dependence on
the magnetic field can be used to develop a protocol for
experimentally extracting both the direction and magni-
tude of the chiral shift parameter in Weyl materials.

In this Letter, the study was restricted to the long-
wavelength limit (k = 0) of the chiral magnetic plasmons
and used an expansion to the linear order in background
magnetic/pseudomagnetic fields. The generalization of
this investigation to the case of nonzero wave vectors
(k 6= 0) and higher orders in magnetic/pseudomagnetic
fields will be reported elsewhere.
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