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Bosonic symmetry protected topological (BSPT) states, the bosonic analogue of topological in-
sulators, have attracted enormous theoretical interest in the last few years. Although BSPT states
have been classified by various approaches, there is so far no successful experimental realization of
any BSPT state in two or higher dimensions. In this paper, we propose that a two dimensional
BSPT state with U(1) x U(1) symmetry can be realized in bilayer graphene in a magnetic field.
Here the two U(1) symmetries represent total spin S* and total charge conservation respectively.
The Coulomb interaction plays a central role in this proposal — it gaps out all the fermions at the
boundary, so that only bosonic charge and spin degrees of freedom are gapless and protected at the
edge. Based on the above conclusion, we propose that the bulk quantum phase transition between
the BSPT and trivial phase, which can be driven by applying both magnetic and electric fields, can
become a “bosonic phase transition” with interactions. That is, only bosonic modes close their gap
at the transition, which is fundamentally different from all the well-known topological insulator to
trivial insulator transitions which occur for free fermion systems. We discuss various experimental

consequences of this proposal.

PACS numbers:

A symmetry protected topological (SPT) state, first
defined in Ref. 1, 2, is the ground state of a local quantum
many-body Hamiltonian whose bulk is gapped and non-
degenerate, but whose boundary remains either gapless
or degenerate as long as the entire system including the
boundary preserves certain symmetries. Fermionic SPT
states include the familiar quantum spin Hall (QSH) in-
sulator [3, 4], the three-dimensional (3d) topological insu-
lator (TT) [5-7], and topological superconductors. Nonin-
teracting fermionic SPT states have been fully classified
and understood [8, 9]. Unlike fermionic systems, bosonic
SPT (BSPT) states require strong interaction to over-
come the tendency to form Bose-Einstein condensates.
The simplest and most well-known BSPT state is the
1d Haldane phase, which can be realized in the simplest
nearest-neighbor spin-1 Heisenberg chain [10, 11]. How-
ever, higher dimensional generalizations of BSPT states
have not been found. The only even potentially feasible
experimental proposal is for a bosonic integer quantum
Hall state in ultracold atoms [12], but even this seems
far away, since as yet experiments with both rotating
traps and artificial magnetic fields are still far from the
quantum Hall regime. The exactly soluble parent Hamil-
tonians constructed in Ref. 1, 2 in dimensions higher
than one all involve high order multiple spin interactions,
and are thus unlikely to exist in realistic materials. Up
to now, all approaches to classifying and characterizing
BSPT states [1, 2, 13-16] rely on mathematical or effec-
tive field theory descriptions, which shed little light on
how to identify a realistic candidate BSPT state.

In the current paper, we hope to bridge the gap be-
tween theoretical studies and experimental realizations of

BSPT states. We propose that bilayer graphene in mag-
netic field (with both inplane and out-of-plane compo-
nents) provides a platform of realizing and probing the 2d
BSPT state with U(1), x U(1), symmetry, where U(1);
and U(1). correspond to the total spin—S* and total elec-
tric charge conservation respectively. Based on the for-
malism developed in Ref. 14, 15, this state has a Z clas-
sification, i.e. with these symmetries there is an infinite
set of non-trivial 2d BSPT classes, which are indexed by
an integer k. Effective field theory descriptions of these
BSPT states have been given in terms of Chern-Simon
field theory [14] and a non-linear sigma model (NLSM)
with a ©-term [15, 17]. The action for the latter is

S = /dsz‘dT é(@un)Q + é—@eabcdnaaxnbaync&nd, (1)
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where n = (n1,n2,n3,n4) is a four component vector
with unit length [15, 17], and Qg3 is the volume of a 3d
sphere with unit radius. In Eq. 1, the BSPT phases cor-
respond to the strongly interacting fixed point g — oo,
and © — 2k7 with nonzero integer k, while the trivial
phase corresponds to the fixed point © — 0. The quan-
tum phase transition between different BSPT phases is
driven by tuning © in Eq. 1, and the critical point is at
O = (2k + 1)7r. A similar phase diagram and renormal-
ization group flow for NLSMSs in one lower dimension was
studied thoroughly in Ref. 18, 19.

Let us elaborate on our claim. It was proposed that an
out-of-plane magnetic field drives undoped graphene into
a “quantum spin Hall insulator”[20] (it is also called the
ferromagnetic quantum Hall state, since the bulk is fully
spin polarized. In order to avoid a canted antiferromag-
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FIG. 1: Schematic of bilayer graphene in the presence of a
magnetic field with both inplane and out-of-plane compo-
nents. (a) Without interactions, the boundary hosts two
channels of fermionic edge states with total central charge
¢ = 2. (b) Including the Coulomb interactions, there is only
one gapless channel of bosonic edge state with ¢ = 1.

netic phase, one also needs an inplane magnetic field to
increase the Zeeman coupling [21, 22], which will be dis-
cussed in detail in the supplementary material [55]). In a
bilayer, this possesses at the Hartree-Fock level two chan-
nels of counter-propagating spin-filtered helical fermionic
edge states [22, 23]. However, when the Coulomb interac-
tion is included, we will demonstrate that (as illustrated
in Fig. 1), the behavior is qualitatively modified to cor-
respond precisely to that of the BSPT theories, Eq. (1)
with & = 1, so that, although it is built from electrons,
it is a proper BSPT state in the following senses:

1. the Coulomb interaction, which is expected to
play an important role in this system, induces a gap for
all fermionic excitations at the boundary, while bosonic
charge and spin excitations remain gapless and protected
by the two U(1) symmetries (Fig. 1b);

2. Using the Chalker-Coddington picture [24], the
bulk quantum phase transition between the nontrivial
SPT phase (k = 1) and trivial (k = 0) phase (hereafter
phrased as “topological to trivial transition”) can be de-
scribed by percolation of domains and the correspond-
ing network of interface/boundary states. Because the
boundary only has gapless bosonic modes, such a topo-
logical quantum phase transition can occur while pre-
serving the bulk gap for fermionic quasiparticles. The
topological to trivial transition can be driven by varying
competing magnetic and electric fields, and we propose
that the bosonic scenario for this quantum phase tran-
sition occurs with sufficiently strong interactions. This
is a qualitatively different situation from the well-known
topological to trivial transitions in weakly correlated sys-
tems, such as the plateau transition between integer
quantum Hall states, or the transition between normal
and topological band insulators — these transitions have
a free fermion description which involves the fermion gap
closing in the bulk. The above statement is supported by
recent numerical studies of a similar model on the bilayer
honeycomb lattice [25, 26].

We now proceed to an exposition of these results. For

non-interacting bilayer graphene, there are two channels
of helical edge states, described by the Hamiltonian

2
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where [ = 1,2 labels the channels, L, R denote the
left and right moving fermions respectively, which also
correspond to electrons with spin-up and down, and
v is the Fermi velocity [56]. The presence of some
counter-propagating edge states was deduced experimen-
tally from non-local transport signatures [22]. When the
Coulomb interaction is ignored, the boundary is a free
fermion conformal field theory (CFT) with central charge
c=2.

The free fermion edge states can be bosonized into two
flavors of free bosons:

= [ S50+ o0 ©)
where [0;(z), Oy (x')] = i0(x — 2")oy, and Py /g ~
ei+iré - For free 1d fermions without interaction, the
Luttinger parameter K = 7.

Coulomb interactions H;,; are conveniently handled in
the bosonization framework. Using the representation of

the fermion density n; ~ 0,¢;, one obtains:
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where Uiptra and Ujpger represent intralayer and inter-
layer forward-scattering interactions, respectively. H,, is
an anharmonic vertex term, and will play a central role
here [57]:

H, ~ acos(2md) — 2ms). (5)

Here we have assumed that the long range Coulomb
interaction is screened to a short range one, but this
is not essential. Physically H, describes the backscat-
tering between two channels of edge states: H, ~
’(/JI’LQZJLRLZJ;R#}Q’L. The anharmonic H, is relevant in the
renormalization group sense, as long as Uintra > Uinter-
This condition is naturally satisfied because Ujpger is sup-
pressed by the square of the wave function overlap be-
tween the two channels of edge states.

When it is relevant, H, will “pin” the bosonic mode
¢— = (¢1 — ¢2)/2, causing large fluctuations of §_ =
0, — 05, leading to a gap in this antisymmetric sector, and
also a gap for all fermions at the boundary. The symmet-
ric edge modes ¢ = (¢1 +¢2)/2 and 0 = 61 + 63, however,
remain gapless, because 6 transforms under symmetry
U(1)¢, while ¢ transforms under U(1),. It is straight-
forward to show — see below — that only physical oper-
ators which create bosonic excitations can be built from



the gapless ¢, 0 fields, consistent with the statement that
the boundary has symmetry protected gapless bosonic
modes. The size of the fermion gap at the boundary state
is estimated in detail in the supplementary material.

The effective low energy theory that describes the
canonical conjugate modes ¢ and 6 reads

~ 0 9 VK 9
i— /dz o (0u0)" + 5 (220" (6)

Hence interaction reduces the central charge of the sys-
tem from ¢ = 2 to ¢ = 1. Because 6 and ¢ transform
nontrivially (i.e. shift under U(1), and U(1)s symme-
tries respectively), there are no anharmonic vertex oper-
ators allowed by symmetry in Eq. 6. Because 6 and ¢
are “dual” to each other, a unit soliton of ¢ at the 1d
boundary carries charge-2e, and a unit soliton of # car-
ries spin S* = 1. The gaplessness of the boundary state
is protected by the U(1). x U(1), symmetry alone: even
if the translation symmetry of the boundary is broken
by disorder (which is inevitable in any real system), as
long as the U(1). x U(1l)s symmetry is preserved, the
boundary must still remain gapless. The edge state in
our system is also very different from the cases studied
in Ref. 27, 28, since in those systems the states localized
at the domain wall is unstable to disorder.

Here we note that although the bosonization of the
edge states of bilayer graphene in a magnetic field was
also studied in Ref. 29, 30, in these works only the spin
symmetry was considered in the bosonization, and the
conclusion of Ref. 29, 30 was that the system is equiv-
alent to a 1d spin model. Here we stress that, both
the U(1)s and U(1). symmetries are crucial to define
the BSPT state: i.e. if either of the U(1) symmetries
is broken (for example if the bulk forms a canted antifer-
romagnetic order), the system will become a trivial state.
With both U(1) symmetries in our system, the boundary
theory Eq. 6 must remain gapless, and it can never be
realized as a 1d system, but rather only as the boundary
of a 2d system, which is an essential property of all SPT
states.

Let us discuss the operator content further. Assuming
¢_ is pinned and #_ fluctuates strongly, one can obtain
the low energy components of the four component vector
n in Eq. 1:

.0
~ €a[3w1,aw2,,{3 ~e' 3
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l
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Here nq + ing corresponds to an interlayer spin-singlet
(8% = 0) Cooper pair, while ng and n4 correspond
to in-plane magnetic order. All components of the
vector n have power-law correlations at the boundary,
and their scaling dimensions are Aleqsthy ath2s] = 2,
A[Zl(—l)lw;ra*wl] = Z. Thus we sce that indeed the
low energy correlations at the edge all correspond to

bosonic fields, which could be built from elementary
bosons of even charge and integer spin. The pres-
ence of four distinct “primary fields” is characteristic of
the Wess-Zumino-Witten (WZW) SU(2); CFT, which is
well-known to be expressable in terms of a single gapless
boson and has ¢ = 1[31, 32]. The model in Eq. (6) is
a deformation of the usual SU(2); theory which reduces
the symmetry to U(1).xU(1)s. It is also equivalent to a
(deformed) O(4) NLSM with &k = 1 WZW term — see e.g.
Ref. 33.

Eq. 7 identified the effective bosonic degrees of freedom
that form a bosonic SPT state in the bulk. There are
two flavors of bosons carrying charge and spin quantum
numbers respectively. Following the method of Ref. [34],
we can derive the wave function of the bosons in the
bulk, by calculating the following correlation function of
the boundary conformal field theory:

W(zy, 20 Wi, Wy ) ~ <H £10(z5) H(g?ww(wk)obg%(g)
j k

where z; and wy, are the complex coordinates in the 2d
plane for the two flavors of bosons. This is equivalent
to calculating the partition function of a 2d Coulomb
gas with both electric and magnetic charges [35, 36], and
Oyg represents a neutralizing background charge opera-
tor. The correlation function in Eq. 8 can be evaluated
with either Eq. 3 or Eq. 6, and the result will be quali-
tatively the same:

U(z1, 22wy, ws - -+ ) ~ Norm(z;, wy) H(ZJ —wg), (9)
-k

where Norm(z;, wy) only depends on the norm of z; —wy,
z; —zj and w; —w;, and contains all the dependence upon
the Luttinger parameters in Eq. 3 and Eq. 6. This wave
function indeed represents a bosonic SPT state: it is sym-
metric under interchange of identical z; or w; bosons, and
the two flavors of bosons view each other as a 2r—flux.
This mutual “flux attachment” picture is the very essence
of the BSPT state [37].

Knowing the effective field theory at the boundary is
the (1 + 1)d NLSM for n with a Wess-Zumino-Witten
term at level £ = 1, the bulk theory can be constructed
with the Chalker-Coddington network model [24], and
as was shown in Ref. 13, 38, the bulk theory obtained by
this construction is precisely Eq. 1 with © = 27. The
physical meaning of this topological ©—term is that, a
vortex of (n1,ms), i.e. a vortex of the superconductor
order parameter, which traps magnetic flux %, would
carry spin 5% = 1, which is perfectly consistent with the
physics of the bilayer QSH state.

It is worth contrasting with the case of a single layer
QSH insulator, in which the boundary cannot be driven
into a state with gapped fermions but gapless bosonic
modes, as long as the U(1). and time-reversal (or U(1);)
symmetry of the QSH insulator are preserved [39, 40].



The mapping between fermionic QSH insulator and
BSPT is only valid for two copies of QSH insulators
(which mathematically is equivalent to four copies of
p % ip topological superconductors), as was shown in
Ref. 41.

By varying competing electric and magnetic fields nor-
mal to the layer, a quantum phase transition can oc-
cur between the BSPT and the trivial state in the 2d
bulk. Using the Chalker-Coddington network picture,
one may construct a theory for the 2d bulk phase tran-
sition which involves only gapless bosonic modes and re-
tains the single-fermion gap. In the field theory Eq. 1
this transition occurs when © is tuned to w. Although
directly analyzing the bulk field theory at © = 7 is diffi-
cult, recent unbiased determinant quantum Monte Carlo
simulation on a similar bilayer honeycomb lattice inter-
acting fermion model confirms that this purely bosonic
topological-trivial quantum phase transition can indeed
happen [25, 26], which is fundamentally different from
the ordinary topological to trivial transition in any free
fermion system. Maintaining the single particle gap re-
quires strong interactions, and other less interesting pos-
sibilities are possible in experiment if correlations are not
sufficiently strong, such as intermediate phases between
the BSPT phase and the trivial phase. Nevertheless,
a direct second order “bosonic” transition like the one
found in Ref. 25, 26 seems allowed and a quite interest-
ing prospect.

Ezperimental Implications

The central prediction of our theory is that in a bilayer
graphene in the quantum spin Hall phase [22], the gap-
less boundary modes are bosonic rather than fermionic.
The low energy charge carriers on the edge are Cooper

FIG. 2: Our proposed set-up for measuring the carrier charge
at the boundary of our system. Most of the sample are
screened by the inner symmetric gates, while the unscreened
region has a stronger interaction which leads to a CAF order,
and induces backscattering of the edge states. We also add
a pair of outer gates to control the strength of interaction in
the CAF region.

pairs €q5¢1,4C2 3, with charge 2e. Tunnelling from a nor-
mal metal electrode or tip is predicted to show a hard
gap, despite ballistic, dissipationless in-plane resistance.
Conversely, tunnelling from a superconducting tip should
show zero gap.

A purely transport measurement is also possible us-
ing shot noise, which has previously been used to probe
fractional charges in quantum Hall edge states [42-45].
By introducing a quantum point contact, either using
electrostatic gates or a nano-constriction, edge-to-edge
backscattering is possible at that contact, with a fi-
nite transmission probability [45]. Individual tunneling
events will carry charge +2e, which is directly observable
in the noise spectrum. The detailed calculation about the
shot noise in a quantum point contact geometry has been
presented in a follow-up paper by some of the current au-
thors [46].

Here we propose a different method to measure the car-
rier charge at the boundary. Compared with the point-
contact geometry, our current proposal is easier to im-
plement experimentally, and more convenient to analyze
theoretically, as it only involves one edge instead of two
opposite edges. Our proposal is based on the dual-gated
geometry that has been used in experiments Ref. 22. The
screened Coulomb interaction in our system can be tuned
by its distance d to the gates due to screening. The com-
petition between interaction and the Zeeman energy can
lead to a rich phase diagram, and when the interaction
is dominant, the system develops a canted antiferromag-
netic (CAF) order [22]. The size of the fermion gap at
the boundary, as well as the magnetic field required to
realize the BSPT state in this set up will be discussed in
detail in the supplementary material.

The stability of the edge states of our system relies
on the conservation of 5%, and if locally the S* conserva-
tion is broken, the edge modes encounters backscattering,
and hence leads to noise of the current. We propose to
screen the Coulomb interaction for most of the sample,
while leaving a region close to the edge unscreened, in
order to develop a local CAF order, which serves as a lo-
cal “magnetic impurity” that breaks the S* conservation.
We calculate the quantum shot noise in the supplemen-
tary material with the proposed set-up Fig. 2, and recover
the expected result:

- . eV

S(w = 0) = 2e"(I) coth ST (10)
e* = 2e is the smoking gun signature of the BSPT state
proposed in our work.

If a direct second order quantum phase transition be-
tween the BSPT and trivial phase found in Ref. 25, 26
indeed happens in a real system, then at the transition,
which corresponds to a (2 + 1)d CFT, the bulk conduc-
tivity should be a universal value o = De?/h, where D
is an order-1 universal constant [47, 48]. Moreover the
transition should be accompanied by a closing of the spin



gap, with observable consequences for spin susceptibility
as well as thermal transport measurements.
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