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We derive an exact operatorial reformulation of the rotational invariant slave boson method and
we apply it to describe the orbital differentiation in strongly correlated electron systems starting from
first principles. The approach enables us to treat strong electron correlations, spin-orbit coupling
and crystal field splittings on the same footing by exploiting the gauge invariance of the mean-field
equations. We apply our theory to the archetypical nuclear fuel UO2, and show that the ground
state of this system displays a pronounced orbital differention within the 5f manifold, with Mott
localized Γ8 and extended Γ7 electrons.

PACS numbers: 64, 71.30.+h, 71.27.+a

Orbital differentiation, where states with different or-
bital character exhibit different levels of correlation, is
a pervasive phenomena in condensed matter systems [1–
4], which gives rise to multiple functionalities in strongly
correlated multiorbital systems. In all known Mott sys-
tems in nature only a fraction of electrons form localized
magnetic moments, while the other electronic states are
extended (but away from the Fermi level). These systems
are commonly called “selective Mott insulators”, and the
transition into these states is called “orbitally selective
Mott transition”. Understanding the mechanism driv-
ing the selection process is a fundamental question in
condensed matter. This issue is especially nontrivial to
address in low-symmetry 5f electron systems, where the
competition between inter- and intra-orbital interactions,
the crystal field splittings (CFS) and the spin-orbit cou-
pling (SOC) is very complicated, as none of these energy
scales is negligible. Orbital differentiation is also a key is-
sue in the presence of disorder [5, 6] and/or charge order-
ing (Wigner-Mott transitions [7]), where only a fraction
of the electrons Mott-localize. Addressing these issues
quantitatively and in an unbiased “ab-initio” fashion is
very challenging. In this work we address the orbital dif-
ferentiation problem from an ab-initio perspective using
the rotationally invariant slave boson (RISB) mean-field
theory [8–10]. As we demonstrate, this method can be
derived from an exact operatorial reformulation of the
many-body problem, which reproduces the Gutzwiller
approximation [11] at the mean-field level [12, 13] and
constitutes a starting point to calculate further correc-
tions. By exploiting the gauge symmetry of the RISB
theory, we build efficient systematic algorithms which
enable us to solve the mean-field equations and eluci-
date the pattern of orbital differentiation even in low-

symmetry 5f electron systems. We apply this method to
UO2 [14] (the most widely used nuclear fuel), and pro-
vide new insight into the role of the CFS in the orbital
differentiation and the nature of the chemical bonds in
this material.

The multi-band Hubbard model:— Let us consider a
generic multi-band Hubbard model:

Ĥ=
∑
k

∑
ij=1,..,na

∑
α=1,..,Mi

∑
β=1,..,Mj

εαβk,ij c
†
kiαckjβ+Ĥ loc, (1)

where k is the momentum conjugate to the unit-cell label
R, the na atoms within the unit cell are labeled by i, j,
and the spin-orbitals are labeled by α, β. As in Refs. 9
and 15, the local interaction and the on-site energies are
both included within the definition of:

Ĥ loc ≡
∑
Ri

∑
AB

[
H loc
i

]
AB
|A,Ri〉〈B,Ri| , (2)

where |A,Ri〉 are local Fock states:

|A,Ri〉 = [c†Ri1]ν1(A). . . [c†RiMi
]νMi

(A) |0〉 , (3)

and A = 1, .., 2Mi runs over all of the possible lists of oc-
cupation numbers {ν1(A), .., νMi

(A)}. In particular, in
this work we have used the Slater-Condon parametriza-
tion of the on-site interaction [16].

Slave Boson reformulation:— Here we derive the RISB
gauge theory and show that it constitutes an exact
reformulation of the generic Hubbard system defined
above. As in Ref. 9, we introduce a new set of fermionic
modes {fRia|a = 1, ..,Mi}, that we call quasi-particle
operators. Furthermore, we introduce a bosonic mode
ΦRiAn for each couple of fermionic local multiplets
(|A,Ri〉, |n,Ri〉) having equal number of electrons, i.e.,

NA ≡
∑Mi

a=1 νa(A) = Nn ≡
∑Mi

a=1 νa(n). Applying the
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algebra generated by {Φ†RiAn} and {f†Ria} to the vacuum
|0〉 generates a new Fock space HSB. We define “phys-
ical Hilbert space” the subspace hSB of HSB satisfying
the following equations (Gutzwiller constraints):

K0
Ri≡

∑
An

Φ†RiAnΦRiAn − Î=0 (4)

KRiab≡f†RiafRib−
∑
Anm

[F †iaFib]mn Φ†RiAnΦRiAm=0 , (5)

where Î is the identity, [Fia]nm ≡ 〈n,Ri| fRia |m,Ri〉,
and |n,Ri〉 and |m,Ri〉 are Fock states constructed as in

Eq. (3), but using the quasi-particle operators fRia.
In Ref. 15 it was shown that the following Hamiltonian

is an exact representation of Ĥ within hSB:

Ĥ =
∑
kijαβ

εαβk,ij c
†
kiαckjβ+

∑
RiAB

[H loc
i ]AB

∑
n

Φ†RiAnΦRiBn, (6)

where c†Riα ≡
∑
a R̂Riaα f

†
Ria, and the operators

R̂Riaα =
∑
AB

∑
nm

[F †iα]AB [F †ia]nm√
NA(Mi −NB)

Φ†RiAnΦRiBm (7)

are such that c†Riα are a representation in hSB of c†Riα. A

remarkable property of Ĥ is that it is invariant with re-
spect to the gauge Lie group generated by the Gutzwiller
constraint operators KRiab, see Eq. (5):

ei
∑

Riab θabKRiab Ĥ e−i
∑

Riab θabKRiab = Ĥ ∀ θ = θ† . (8)

In fact, Eq. (8) does not hold only within the subspace
hSB (which would be a trivial consequence of Eq. (5)),
but in the entire RISB Fock space HSB [17]. [18–23]

Operatorial formulation of RISB theory:— The opera-
tors R̂Riaα defined above are constructed in such a way
that c†Riα are a representation in the physical RISB sub-
space of the corresponding original fermionic operators
c†Riα. However, this construction is not unique. In par-
ticular, Eq. (7) can be modified as follows:

R̂Riaα=:
∑
AB

∑
nm

[F †iα]AB [F †ia]nm√
NA(Mi −NB)

Φ†RiAn[1̂+X̂AB ] ΦRiBm :

(9)
where “:” indicates the normal ordering [24], and X̂AB

is any normally-ordered algebraic combination of bosonic
ladder operators such that each term contains at least 2
modes. In fact, since X̂AB is normally-ordered and the
physical RISB states contain only one boson by construc-
tion, see Eq. (4), the matrix elements of Eqs. (7) and (9)
are independent of X̂AB within hSB.

Of course, any choice of X̂AB in Eq. (9) would be equiv-
alent if we were able to solve Ĥ exactly. However, this
choice affects the RISB mean-field approximation (that
we are going to introduce below). Interestingly, it is pos-
sible to construct X̂AB in such a way that: (i) the RISB
mean-field theory is exact for any uncorrelated Hubbard

Hamiltonian, and (ii) the invariance property [Eq. (8)]
of Ĥ with respect to the gauge group remains valid. To
the best of our knowledge, this operatorial construction,
which is derived in the supplemental material of this
work [17], was not provided in any previous work.

RISB mean-field theory:— At zero temperature, the
RISB mean-field theory consists in minimizing the ex-
pectation value of Ĥ with respect to |ΨMF〉 = |Ψ0〉⊗ |φ〉,
where |Ψ0〉 is a Slater determinant constructed with the

quasi-particle operators fRia, |φ〉 is a bosonic coherent
state, and the Gutzwiller constraints, see Eqs (4) and
(5), are enforced only in average.

It can be verified that taking the expectation value of
Eqs. (4) and (5) with respect to |ΨMF〉 gives:

Tr
[
φ†iφi

]
=1 ∀ i (10)

[∆pi]ab≡Tr
[
φ†iφiF

†
iaFib

]
=〈Ψ0|f†RiafRib|Ψ0〉 ∀ i ,(11)

where the matrix elements [φi]An, which we call “slave
boson amplitudes”, are the eigenvalues of the annihila-
tion operators ΦRiAn with respect to |φ〉. Similarly, it
can be verified that the expectation value of Ĥ with re-
spect to |ΨMF〉 (normalized to the number of k-points
N ) is given by:

E ≡ 1

N
〈ΨMF| Ĥ |ΨMF〉 =

∑
i

Tr
[
φiφ

†
i H

loc
i

]
+

1

N
∑
kij

∑
ab

[
Ri εk,ijR

†
j

]
ab
〈Ψ0| f†kiafkjb |Ψ0〉 , (12)

where [Ri]aα ≡ 〈φ| R̂Riaα |φ〉 is given by:

[Ri]aα = Tr
[
φ†iF

†
iαφiFib

][
∆pi(1− [∆pi])

]− 1
2

ba
, (13)

1 is the identity matrix, and R̂Riaα are the renormaliza-
tion operators represented in Eq. (9), and constructed
explicitly in the supplemental material [17]. The RISB
mean-field theory amounts to minimize Eq. (12) with re-
spect to |ΨMF〉 while fulfilling Eqs. (10) and (11).

Advantages of the gauge invariant formulation:— As
shown in the supplemental material [17], the above con-
strained minimization problem can be conveniently cast
— analogously to DMFT [25–27] — as a root problem for
the variables (Ri, λi), where Ri were defined in Eq. (13),
and λi are matrices of Lagrange multipliers introduced
in order to enforce the Gutzwiller constraints [Eq. (11)].
These variables encode the so called “Gutzwiller self en-
ergy” of each inequivalent atom, that is defined as:

Σi(ω) ≡ (I −R†iRi )(R
†
iRi )

−1 ω + (R−1i λiR†−1i ) , (14)

where Zi ≡ R†iRi are matrices of quasi-particle weights.
Let us represent formally the above-mentioned root prob-
lem as follows:

F [(R1, λ1), ..., (Rna
, λna

)] = 0 , (15)
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where na is the number of inequivalent atoms within the
unit cell. As shown in the supplemental material [17],
each evaluation of F requires to solve na impurity mod-
els, where the bath has the same dimension of the impu-
rity for each inequivalent atom [15]. An important ad-
vantage of the present formulation with respect to Ref. 15
is that, by virtue of Eq. (8), Eq. (15) has a manifold of
physically equivalent solutions, which are mapped one
into the other by the following group of gauge transfor-
mations: Ri → u†i (θi)Ri, λi → u†i (θi)λi ui(θi), where
ui(θi) ≡ eiθi are generic unitary matrices. This prop-
erty effectively reduces the dimension of the root prob-
lem, which makes the code more stable and speeds up
the convergence by reducing substantially the number of
evaluations of F necessary to solve Eq. (15). Remarkably,
we found that exploiting the gauge freedom mentioned
above is essential in order to study strongly correlated
materials where the SOC and the CFS are equally im-
portant, which generally makes the structure of Σi(ω)
particularly complex [28]. Further technical details are
discussed in the supplemental material [17].

Calculations of UO2:— UO2 is widely used as a nu-
clear fuel. At ambient pressure it is a Mott insulator
and crystallizes in a cubic fluorite structure. Given the
importance of this material, its electronic structure and
energetics have been extensively investigated both ex-
perimentally and theoretically, e.g., with DFT+U [30–
32] and other single-particle approaches [33, 34]. How-
ever, within these techniques it is not possible to ad-
dress the properties of the paramagnetic state of this
material, which is stable above the Néel temperature
TN ' 30.8K [35]. Because of this reason, several DMFT
studies of paramagnetic UO2 have been recently per-
formed [14, 36–38]. A particularly important statement
concerning the orbital differentiation of the U-5f elec-
trons was made in Refs. [14, 36], where it was observed
that the 5f5/2 states are Mott localized, while the 5f7/2
states are extended (but gapped). However, these stud-
ies did not investigate how this conclusion is influenced
by the crystal field effects, which is the main goal of
this paper. For this purpose, we perform charge self-
consistent LDA+RISB simulations of paramagnetic UO2

taking fully into account the CFS. As in Ref. [15], we uti-
lize the density functional theory [39] code WIEN2K [40]
and employ the standard ”fully localized limit” form for
the double-counting functional [16]. These calculations
would have been prohibitive without the algorithms de-
rived in this work [17].

As in Ref. [36], in this work we assume that the Hund’s
coupling constant is J = 0.6 eV . In the upper panel of
Fig. 1 are shown the LDA and LDA+RISB total energies
E(V ) obtained at zero temperature for U = 10 eV [17].
The corresponding pressure (P-V) curves, obtained from
P (V ) = −dE/dV , are shown in the lower panel in com-
parison with the experimental data of Ref. [41] (which
were obtained at room temperature). The RISB P-V
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Figure 1. (Color online) Zero temperature LDA and
LDA+RISB total energies (upper panel) and corresponding
pressure-volume phase diagrams compared with the room-
temperature experiments of Ref. [41] (lower panel).

curve and, in particular, the experimental equilibrium
volume Veq ' 41 Å3/f.u., compare remarkably well with
the experiments. This favorable comparison with the ex-
periments gives us confidence that our theoretical ap-
proach is able to describe the ground-state properties
of this material. As shown in the supplemental mate-
rial [17], the P-V curve (and, in particular, the equilib-
rium volume) is essentially identical for U = 8 eV , which
is the value assumed in Ref. [36]. Furthermore, reducing
U from 10 eV to 8 eV does not influence appreciably the
electronic structure of UO2 at Veq [42].

In order to describe the orbital differentiation in UO2

taking into account the CFS, it is necessary to decompose
the U-5f single-particle space in irreducible representa-
tions of the double O point symmetry group [29, 44] of
the U atoms. It can be shown that this repartition con-
sists in: 1 Γ6(2) doublet, 2 Γ7(2) doublets and 2 Γ8(4)
quartets [45]. These irreducible representations are gen-
erated by the following states:

|Γ6, 7/2,±〉=
√

5/12 |7/2,±7/2〉+
√

7/12 |7/2,∓1/2〉
|Γ7, 7/2,±〉=∓

√
3/4 |7/2,±5/2〉±

√
1/4 |7/2,∓3/2〉

|Γ(1)
8 , 7/2,±〉=±

√
7/12 |7/2,±7/2〉∓

√
5/12 |7/2,∓1/2〉

|Γ(2)
8 , 7/2,±〉=∓

√
1/4 |7/2,±5/2〉∓

√
3/4 |7/2,∓3/2〉

|Γ7, 5/2,±〉=
√

5/6 |5/2,±3/2〉−
√

1/6 |5/2,∓5/2〉
|Γ(1)

8 , 5/2,±〉=
√

1/6 |5/2,±3/2〉+
√

5/6 |5/2,∓5/2〉

|Γ(2)
8 , 5/2,±〉= |5/2,±1/2〉 , (16)

which are expressed in terms of the conventional basis of
eigenstates of the total angular momentum (JJ basis). By
virtue of the Schur lemma [29], the entries of the U-5f
self energy Σ(ω) coupling states belonging to inequiva-



4

Table I. Eigenvalues of the 5f quasi-particle matrix Z and cor-
responding orbital occupations for LDA+RISB calculations
at U = 10 eV . Theoretical results obtained by taking into
account the crystal field splittings and by neglecting them.

w/ CFS Γ8(4) Γ7(2) Γ8(4) Γ7(2) Γ6(2)

Z 0 0.92 0.92 0.95 0.95

n 1.92 0.14 0.08 0.06 0.04

w/o CFS 5/2 7/2

Z 0 0.96

n 1.98 0.16

lent irreducible representations are equal to 0. However,
the total angular momentum J2 is not a good quantum
number, as the matrix elements of Σ(ω) coupling the fol-
lowing states are allowed: |Γ7, 5/2,±〉 with |Γ7, 7/2,∓〉,
|Γ(1)

8 , 5/2,±〉 with |Γ(2)
8 , 7/2,∓〉 and |Γ(2)

8 , 5/2,±〉 with

|Γ(2)
8 , 7/2,±〉. Furthermore, the 5/2 and 7/2 states are

not degenerate [17]. Note that these CFS are present be-
cause of the crystal structure, and would not exist if the
environment of the U atoms was isotropic.

The main goals of this work are: (1) to show that the
CFS affect substantially the electronic structure of UO2,
and (2) to describe and explain the pattern of orbital
differentiation of the U-5f electrons in this material.

In Table I are shown the eigenvalues of the 5f quasi-
particle matrix Z = R†R obtained by taking into account
the CFS and the corresponding orbital occupations. The
approximate results calculated by averaging over the CFS
are also shown. The details of the averaging procedure
are described in the supplemental material. We observe
that when the CFS are taken into account the selective
Mott localization occurs only within the Γ8 sector, while
the eigenvalues of Z of the other 5f degrees of freedom are
relatively large. More precisely, Z has 4 null eigenvalues
with Γ8 character. On the other hand, when the CFS are
neglected [14, 36], the Mott localization can only occur
within the entire 5/2 sector, which is 6 times degenerate.
It is important also to observe that when the CFS are
taken into account the Mott localized Γ8 states do not
have a well defined total angular momentum J2. In fact,
we found that the eigenstates of Z with null eigenvalues
are the following:

|1〉 ' 0.939 |Γ(1)
8 , 5/2,+〉+ 0.343 |Γ(2)

8 , 7/2,−〉

|2〉 ' 0.939 |Γ(1)
8 , 5/2,−〉+ 0.343 |Γ(2)

8 , 7/2,+〉

|3〉 ' 0.939 |Γ(2)
8 , 5/2,+〉+ 0.343 |Γ(1)

8 , 7/2,−〉

|4〉 ' 0.939 |Γ(2)
8 , 5/2,−〉+ 0.343 |Γ(1)

8 , 7/2,+〉 , (17)

which have considerably mixed J2 character. A further
indication of the importance of the CFS in UO2 is given
by the orbital occupations of the U-5f electrons. In fact,
the occupation corresponding to the Mott localized 5f

electrons is 1.92, while the remaining 0.32 5f electrons
are extended (but gapped). Instead, when the CFS are
neglected, the total number of Mott localized 5f elec-
trons is 1.98, while the occupation of the extended 5f
degrees of freedom is only 0.16. The fact that the over-
all occupancy of the 5f levels deviates considerably from
an integer value confirms the importance of covalency ef-
fects in UO2, which has been pointed out also in previous
experimental and theoretical studies [46–49]. Note also
that the Mott-localized Γ8 degrees of freedom have occu-
pancy close to integer, which is a factor that is known to
promote localization [3].

Let us now address the question of what is the physical
origin of the strong CFS orbital differentiation in UO2.
The first important observation is that the importance
of the CFS splittings in UO2 is not related with the U-
5f crystal fields (on-site energy splittings) [2–4], which
are very small in this material (∼ 7meV ). In fact, a di-
rect calculation shows that neglecting the CFS contribu-
tions to the on-site energy splittings [17] does not affect
sensibly any of the results considered above (data not
shown). Furthermore, we find that the total energy of
the approximate solution obtained by averaging over the
crystal fields is about 0.59 eV/f.u. higher with respect
to the solution where the CFS are taken into account,
which is a much larger energy scale with respect to the
above mentioned on-site energy splittings. These obser-
vations and the data in Table I indicate that the main
physical reason why it is essential to take into account
the CFS concerns the above mentioned covalent nature
of the bonds in UO2, i.e., the hybridization between the
U-5f and the uncorrelated electrons (in particular, the
O-2p states). In particular, we note that neglecting the
CFS implies (by construction) that the |Γ7, 5/2,±〉 elec-
trons are Mott localized, which leads to an underestima-
tion of the contributions to the energy arising from the
hybridization of these electrons with the O-2p bands. On
the other hand, taking into account the CFS enables to
capture the fact that the hybridization of the Γ7 electrons
is larger with respect to the Γ8 localized states [37].

More details about the electronic structure of UO2 are
reported in the supplemental material [17].

In summary, we have derived an exact RISB reformula-
tion of the multiband Hubbard model, which establishes
the foundation of the mean-field approximation and con-
stitutes a starting point for calculations beyond mean-
field. The gauge invariance of our theory resulted also
in substantial algorithmic advancements, which make it
possible to study from first principles the energetics and
the electronic structure of strongly correlated materials
taking into account simultaneously electron correlations,
SOC and CFS. By utilizing our theoretical approach, we
have performed first principle calculations of the orbital-
selective Mott insulator UO2, finding good agreement
with available experimental data. Furthermore, we have
demonstrated that taking into account the CFS is essen-
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tial in order to capture the correct pattern of orbital dif-
ferentiation between the U-5f states, and that the main
physical reason underlying the CFS orbital differentia-
tion in UO2 is not the contribution of the crystal field
on-site energies (which is essentially negligible), but con-
cerns the hybridization between the U-5f and the O-2p
electrons [37], which originates covalent bonds in this ma-
terial [46–49]. The strong orbital differentiation between
the Γ8 and the Γ7 electrons could be directly detected
experimentally, e.g., by means of angle-resolved photoe-
mission techniques [50, 51], which would enable us to
discriminate between the spectral contributions of the
different states based on their symmetry properties. In
particular, based on the orbital occupations of Table I
and the Friedel sum rule, we predict that the 5f spec-
tral weight [52, 53] below the Fermi level has mostly Γ8

character — while it would have also a substantial Γ7

contribution if the CFS orbital differentiation was a neg-
ligible effect. The analysis presented here is very general
and could be applied also to other f electron systems,
e.g., to materials displaying strong magnetic anisotropy
or more general forms of multipolar order [54].
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[18] N. Lanatà, H. U. R. Strand, X. Dai, and B. Hellsing,
Phys. Rev. B 85, 035133 (2012).

[19] R. Bhatia, Positive Definite Matrices (Princeton Univer-
sity Press, Princeton and Oxford, 2007).

[20] F. Zhou and V. Ozoliņš, Phys. Rev. B 83, 085106 (2011).
[21] M.-T. Suzuki, N. Magnani, and P. M. Oppeneer, Phys.

Rev. B 88, 195146 (2013).
[22] G. Amoretti, A. Blaise, R. Caciuffo, J. M. Fournier, M. T.

Hutchings, R. Osborn, and A. D. Taylor, Phys. Rev. B
40, 1856 (1989).

[23] H. Nakotte, R. Rajaram, S. Kern, R. J. McQueeney,
G. H. Lander, and R. A. Robinson, J. Phys.: Conf. Ser.
251, 012002 (2010).

[24] K. Schönhammer, Phys. Rev. B 42, 2591 (1990).
[25] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozen-

berg, Rev. Mod. Phys. 68, 13 (1996).
[26] V. I. Anisimov, A. I. Oteryaev, M. A. Korotin, A. O.

Anokhin, and G. Kotliar, J. Phys. Condens. Matter 9,
7359 (1997).

[27] A. I. Lichtenstein and M. I. Katsnelson, Phys. Rev. B 62,
R9283 (2000).

[28] The interplay between SOC and CFS can generate mul-
tiple equivalent representations of the point symmetry
group in the local single particle space, so that Σ(ω) is
not made automatically diagonal by selection rules [29].

[29] E. P. Wigner, Group theory and its application to the
quantum mechanics of atomic spectra (Academic Press,
1959).

[30] H. Y. Geng, Y. Chen, Y. Kaneta, and M. Kinoshita,
Phys. Rev. B 75, 054111 (2007).

[31] B.-T. Wang, P. Zhang, R. Lizárraga, I. Di Marco, and
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