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Recently, very robust universal properties were shown to arise in one-dimensional growth processes
with local stochastic rules, leading to the Kardar-Parisi-Zhang universality class. Yet it has remained
essentially unknown how fluctuations in these systems correlate at different times. Here we derive
quantitative predictions for the universal form of the two-time aging dynamics of growing interfaces
and we show from first principles the breaking of ergodicity that the KPZ time evolution exhibits.
We provide corroborating experimental observations on a turbulent liquid crystal system, as well as
a numerical simulation of the Eden model, and we demonstrate the universality of our predictions.
These results may give insight into memory effects in a broader class of far-from-equilibrium systems.

Introduction. Non-equilibrium dynamics is ubiqui-
tous in nature, and takes diverse forms, such as avalanche
motion in magnets and vortex lines [1, 2] ultraslow re-
laxation in glasses [3, 4], unitary evolution towards ther-
malization in isolated quantum systems [5], coarsening in
phase ordering kinetics [6], and flocking in living matter
[7]. Prominent examples are growth phenomena, which
abound in physics [8–12], biology [8, 13, 14], and beyond
[15]. As some of these systems try to reach local equi-
librium or stationarity, a great variety of behaviors can
occur, such as aging dynamics and memory of past evo-
lution [1, 4, 6, 16]. How universal and generic are these
behaviors is a fundamental question [16].

One important example of growth arises when a stable
phase of a generic system expands into a non-stable (or
meta-stable) one, in presence of noise. While spreading,
the interface separating the two phases develops many
non-trivial geometric and statistical features. A univer-
sal behavior then emerges, unifying many growth phe-
nomena into a few universality classes, irrespective of
their microscopic details. The most generic one, for lo-
cal growth rules, is the celebrated Kardar-Parisi-Zhang
(KPZ) class, now substantiated by many experimental
examples, such as growing turbulence of liquid crystal [9–
11], propagating chemical fronts [15], paper combustion
[12] and bacteria colony growth [13]. For one-dimensional
interfaces growing in a plane, as studied in many experi-
ments, it is characterized by the following KPZ equation
[17]:

∂th(x, t) = ν∂2
xh(x, t) +

λ0

2
(∂xh(x, t))2 +

√
D η(x, t) (1)

which describes the motion of an interface of height
h(x, t) at point x ∈ R at time t, driven by a unit space-
time white noise η(x, t). Recently, this problem became
an outstanding example where a wealth of universal sta-
tistical properties can be solved exactly, from the KPZ
equation and related lattice models [18–28]. At large
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FIG. 1. Sketch of the KPZ time evolution: the two rough
lines show the expanding KPZ height, describing the edge of
a growing circular region. Note that, for isotropic systems,
the local radius corresponds to h(0, t) in any angular direc-
tion. (a) The fluctuations of the interface at time t2 are de-

scribed by the GUE Tracy-Widom distribution, F ′2(h̃2), with

the rescaled height h̃2 = h̃t2 = h(0,t2)−v∞t2
(Γt2)1/3

. (b) Given the

fluctuations of the height at a previous time t1 = t2(1 + ∆)−1

along the same angular direction (black arrow), the two-time

conditional probability density p(h̃2|h̃1) (red line) measures

the probability of observing a fluctuation value h̃2 at time t2,
given the value of h̃1 at the previous time t1 (the inset shows

the conditional distribution for h̃1 = 0).

time, the height evolves as h(0, t) ' v∞t + (Γt)1/3h̃t
with system-dependent parameters v∞,Γ and a stochas-
tic variable h̃t that carries universal information of the
fluctuations. Remarkably, in the limit t → ∞, h̃t fol-
lows one of a few non-Gaussian universal distributions,
selected only by the global geometric shape of the initial
condition h(x, t = 0): in particular, the GUE Tracy-
Widom distribution [29], F2(σ), when h(x, 0) is narrowly
curved [droplet initial condition [20–23], see Fig. 1(a)]



2

and its GOE variant, F1(σ), when h(x, 0) is a flat surface
[24]. These two distributions also describe the fluctua-
tions of the largest eigenvalue of a gaussian random ma-
trix drawn from the unitary (GUE) or orthogonal (GOE)
ensembles, revealing a striking connection to the the-
ory of random matrices [19, 30]. An additional univer-
sal distribution, the Baik-Rains distribution [18], char-
acterizes the stationary state of the growth and can be
reached [25] by choosing h(x, 0) as Brownian motion in
x. This geometry-dependent universality was tested and
confirmed experimentally, in studies on growing inter-
faces of liquid-crystal turbulence [9–11]. The experi-
ments also allowed to investigate time-correlation prop-
erties that were inaccessible by analytical approaches.
This revealed an anomalous memory effect for the droplet
case [11], by which fluctuations in h keep indefinite
memory of the past, in contrast to the naive expecta-
tion that memory is eventually lost. This persistence of
memory, signaling ergodicity breaking in the time evolu-
tion of the droplet case, is quantified by the long time
limit of the covariance that remains strictly positive
[11, 31] lim∆→∞ limt1→∞ C(t1, t1(1 + ∆)) > 0 where
C(t1, t2) = cov[h(0, t1), h(0, t2)]. Theoretically, how-
ever, such two-time quantities remained so far analyt-
ically intractable, except for a few exceptional results
[32, 33] that however are too involved to produce prac-
tical predictions. Since experiments and simulations are
always confronted with relatively limited ranges of time
t1 and ratio ∆, while the suspected ergodicity breaking
can only be addressed in the limits t1 →∞ then ∆→∞,
theory that can directly deal with these asymptotic lim-
its, and also make a bridge to finite-time observations
through predictions, is a crucial missing facet of the prob-
lem. Here we provide the first theoretical results for the
correlations at two different times in the infinite time
limit of the KPZ equation, and we analytically prove the
persistence of correlations that was previously observed
in finite-time experiments [11]. This shows that a fraction
of the fluctuations of the droplet KPZ interface, mostly
the ones with large and positive rescaled height, maintain
their configurations stable during the time evolution, as
also made clear below from a dual directed polymer pic-
ture. This translates into an ergodicity breaking in all
the growth processes with the droplet initial condition.

Two-time JPDF. We address the problem by deriv-
ing an analytical result for the joint probability density
function (JPDF) of the height h at two different times,
t1 and t2 = (1 + ∆)t1, with the droplet initial condition,
see Fig. 1. It is valid in a wide range of parameters and
agrees remarkably well with experimental and numerical
data (see below). We focus on the limit t1, t2 →∞ with
their ratio t2/t2 = 1 + ∆ kept finite, so that the obtained
correlations are expected to be universal within the KPZ
class. More precisely, we compute the JPDF for the

rescaled height h̃1 = h̃t1 = h(0,t1)−v∞t1
(Γt1)1/3

and the rescaled
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FIG. 2. (a) Representation of the mapping from the height
h(x, t) in the KPZ equation (1) to the free energy of a di-
rected polymer in random potential. Shown here is a typical
configuration of two polymers, which tend to visit the lower
valleys of the potential (bluer regions). The two paths tend
to overlap in the time interval [0, t1], accounting for ergodic-
ity breaking (see text). (b) Mapping (via the replica trick)
to a quantum mechanical transition amplitude of attractive
one-dimensional bosons.

two-time height difference h̃12 = h(0,t2)−h(0,t1)−v∞t1∆
(Γt1∆)1/3

. It

is defined as

P∆(σ1, σ)dσ1dσ = lim
t1→∞

{
Prob

(
σ1 ≤ h̃1 ≤ σ1 + dσ1, σ ≤ h̃12 ≤ σ + dσ

)}
(2)

and quantifies how much memory of the configuration at
the earlier time t1 is retained at the later time t2, as illus-
trated in Fig. 1(b). It allows to calculate the conditional
cumulants 〈h̃n12〉ch̃1>σ1c

, i.e., the cumulants of the variable

h̃12 conditioned to realizations with h̃1 larger than some
fixed value σ1c. It also allows to predict the rescaled
covariance under the same conditioning, defined as

C∆,σ1c
=
C(t1, t2)h̃1>σ1c

C(t1, t1)h̃1>σ1c

= 1 + ∆1/3
cov[h̃1, h̃12]h̃1>σ1c

〈h̃2
1〉ch̃1>σ1c

.

(3)
These quantities, computed here analytically for the first
time, allow to probe memory effects and quantify the
breaking of ergodicity in the dynamics. In particular,
(3) quantifies how much memory of the fluctuations with
rescaled amplitudes larger than σ1c is kept at later times
and it recovers the full two-time covariance C(t1, t2) in
the limit σ1c = −∞.
Solution via the directed polymer. To derive a numer-

ically tractable expression for the JPDF (2), we exploit
the fact [34] that the KPZ equation is equivalent to a
(statistical mechanics) problem of space-time paths (i.e.
“growth histories”) in a random potential, which is fur-
ther mapped into a quantum problem of bosons (see

Fig. 2). From now on we use the scales x∗ = (2ν)3

Dλ2
0

,

t∗ = 2(2ν)5

D2λ4
0

, h∗ = 2ν
λ0

as units of space, time and height,
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FIG. 3. Test of the theoretical prediction for the conditional mean 〈h̃12〉ch̃1>σ1c
and variance 〈h̃2

12〉ch̃1>σ1c
with the liquid-crystal

experiment (a) and the Eden-model simulation (b). Here the results for σ1c = −1 and 0 are shown (see also Fig. S3 in [35]for
σ1c = −1.5). Data at different t1 are shown in different colors and symbols. The regions of overlapped data indicate the
asymptotic ∆-dependence, which is found to be in excellent agreement with the theoretical predictions (black lines), without
any fitting parameter. For comparison, the theoretical curves with another value of σ1c are shown by gray thin lines. The error
bars indicate the standard errors, and the shaded areas show the uncertainty due to the estimation error in v∞ and Γ. To reduce
the effect of finite-time corrections, here we used such realizations that satisfy h̃1 > h̃1c with Prob[h̃1 ≥ h̃1c] = 1 − F2(σ1c).
The deviation of the non-overlapped data is due to finite-time corrections, which decay as t−1

1 , see Fig. S4 in [35]). Note
that the asymptotic theoretical curves converge to the Baik-Rains values (mean 0, variance 1.1504) at ∆ → 0 and the GUE
Tracy-Widom values (mean -1.7711, variance 0.8132, indicated in the figures by the green bars) at ∆→∞.

respectively. In other words, x/x∗, t/t∗, h/h∗ are sim-
ply denoted by x, t, h, respectively (this amounts to set-
ting ν = 1, λ0 = 2 and D = 2 in the KPZ equation,
which leads to Γ = 1). In these units, from (1), the func-
tion Z(x, t) = eh(x,t) satisfies a linear stochastic equation,
thus it can be written as a sum over space-time paths and
can be interpreted as the canonical partition sum of a di-
rected polymer (DP) with endpoints (0, 0) and (x, t) in a
unit white noise random potential −

√
2 η [see Fig. 2(a)]

Z(x, t|y, 0) =

∫ x(t)=x

x(0)=0

Dxe−
∫ t
0
dτ [ 14 ( dxdτ )2−

√
2 η(x(τ),τ)].

The function P∆(σ1, σ) maps to the JPDF of the free
energies of two DP starting both in (0, 0) but ending in
(0, t1) and (0, t2 = t1(1 + ∆)): in Fig. 2(a) is shown a
typical configuration of these two paths, which tend to
visit the lower valleys of the potential (bluer regions), i.e.
faster growth regions, compatible with their boundary
conditions and kinetic energies, which tend to minimize
their length. The JPDF (2) is obtained [35] from the joint
integer moments 〈Z(0, t1)n1Z(0, t2)n2〉, averaged over re-
alizations of η. They are given by the quantum mechan-
ical amplitude of the following process [see Fig. 2(b)]:
n1 +n2 bosons with pair-wise attractive potential evolve
from x = 0 in imaginary time up to time t1. At t = t1, n1

of them are annihilated at x = 0, while the other n2 keep
evolving up to t = t1(1+∆), at which they are all finally
destroyed at x = 0 (Eq.(S3) in [35]). Their Hamiltonian

is the Lieb-Liniger Hamiltonian with attractive interac-
tion

H
(n)
LL = −

n∑
j=1

∂2
xj − 2

n∑
i<j

δ(xi − xj)−
n

12
, (4)

extensively studied recently in the context of integrable
out-of-equilibrium dynamics [38–40]. Integrability of this
dual quantum model allows us to derive an analyti-
cal expression for P∆(σ1, σ), in the form P∆(σ1, σ) =

P
(1)
∆ (σ1, σ)(1 +O(e−

4
3σ

3/2
1 )) with P

(1)
∆ (σ1, σ) exactly de-

termined in this work [35]. It is written as a trace of
kernels acting on R× R:

P
(1)
∆ (σ1, σ) =

(
∂σ1

∂σ −∆−1/3∂2
σ

)
× (5){

F2(σ)Tr
[
∆1/3ΠσK

∆
σ1

Πσ(I −ΠσKAiΠσ)−1 −Πσ1
KAi

]}
.

where Πσ projects on the interval [σ,+∞] ∈ R, I is
the identity operator and ∂σ denotes partial deriva-
tives. The expression involves the well-known Airy kernel
KAi(r, r

′) =
∫∞

0
dzAi(r + z)Ai(r′ + z) from random ma-

trix theory [29] and a novel kernel

K∆
σ1

(r, r′) =

∫ ∞
0

dz1dz2Ai(−z1 + r)Ai(−z2 + r′)

×KAi(z1∆1/3 + σ1, z2∆1/3 + σ1). (6)

The formula (5) can be easily evaluated numerically for
any value of σ1 inside its expected validity range (specif-
ically σ1 & −1.5). This allows us to perform direct tests
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FIG. 4. The conditional covariance C∆,σ1c = C(t1, t2)h̃1>σ1c
/C(t1, t1)h̃1>σ1c

((3)). a,b, Experimental (a) and numerical (b)
results for σ1c = −1 and with varying t1 (symbols), compared with the theoretical prediction (black line). The error bars

indicate the standard errors. To reduce the effect of finite-time corrections, here we used such realizations that satisfy h̃1 > h̃1c

with Prob[h̃1 ≥ h̃1c] = 1 − F2(σ1c). c, Numerical data for t1 = 1008 and for σ1c = −0.5,−1,−1.5 and −∞ (unconditioned).
Error bars are omitted here for the sake of visibility. The black lines indicate the theoretical predictions for finite σ1c. At large
∆ and for any σ1c they converge to their asymptotic values as C∆→∞,σ1c + Aσ1c∆

−2/3 + Bσ1c∆
−1 + . . .. For σ1c = −∞ (the

unconditioned case), the theory suggests a strictly positive asymptotic value, specifically C∞,−∞ ≈ 0.6, which is consistent
with the trend of the unconditioned data set in the panel c (purple stars).

of the theoretical predictions, both experimentally and
numerically, without any fitting parameters. Experimen-
tally, we study growing interfaces of electrically-driven
liquid-crystal turbulence, which were previously shown
to be in the KPZ class [9–11] (see [35] and [11] for de-
tails). We use 955 interfaces, generated from a turbulent
nucleus (droplet initial condition) triggered by laser, for
which the non-universal parameters v∞ and Γ were de-
termined with high precision [11] and used to obtain the
rescaled variables. Then we measure the conditional cu-
mulants 〈h̃n12〉ch̃1>σ1c

with different t1 [Fig. 3(a)]. Their

asymptotic forms, which are indicated by overlapping of
data sets, are found to show an excellent agreement with
the theoretical predictions [Figs. 3(a) and S3(a) in [35]].
For a further test, we carry out numerical simulations
of the off-lattice Eden model [41] (5000 realizations; see
[35] for details) and the same quality of agreement is ob-
tained [Figs. 3(b) and S3(b) in [35]]. We also measure
the conditional covariance (3) and find agreement both
experimentally and numerically (Fig. 4). This indicates
that our predictions describe universal time correlation of
the droplet KPZ interfaces. Moreover, our theory shows
analytically for the first time the crossover between dif-
ferent probability distributions for h̃12, as ∆ varies (see
Fig. 5). In the limit of close times, t2/t1 → 1+ the
JPDF (5) factorizes and h̃1, h̃12 become two independent
random variables following respectively the GUE Tracy-
Widom and Baik-Rains distributions. The emergence of
the Baik-Rains distribution is direct evidence of the ap-
proach to the KPZ stationary state when t2/t1 → 1+ [31].
As time separation increases, a non-trivial aging form
develops and for ∆ → ∞ the joint statistics factorizes
into the product of two GUE Tracy-Widom distributions.
The next order correction, of order O(∆−1/3), gives ac-
cess to the asymptotic value of the persistent correlation

C∆→∞,σ1c
: as σ1c decreases from +∞ to −∞, i.e., the

unconditioned case, it is predicted to decrease from 1 to
a strictly positive value estimated to be ≈ 0.6 [35], which
is consistent with our numerical data [Fig. 4(c), purple
stars].

The directed polymer/growth-history path represen-
tation enlightens this ergodicity breaking phenomenon.
As illustrated in Fig. 2, the two polymers tend to visit
the same minima of the random potential thus sharing
a finite fraction, i.e. the overlap 0 < q < 1, of their
paths (growth histories) in the time interval [0, t1]. In-
deed, in the large time limit it is known that the DP
partition sum from (0, 0) to (x, t) is dominated by the
path between these two points which minimize the DP
energy. Since two optimal paths in the same potential
necessarily coincide once they meet, and that both poly-
mers must pass through (0, 0), a finite mean overlap q
is expected. This effect thus combines an energetic and
a geometric origin and translates into a finite two-time
correlation even in the limit t2 � t1. Our theory further
quantifies the energetic/height level aspect: as σ1c is in-
creased, noise realizations with large and positive height
fluctuations are selected in the interval 0 ≤ t ≤ t1. These
correspond to realizations of the random potential deeper
than average: therefore the shared fraction q of path of
the two polymers approaches unity, and the memory be-
comes perfect C∆→∞,σ1c

→ 1. This is consistent with the
experimental and numerical observation (Fig. 4). Note
that, interestingly enough, also the negative height fluc-
tuations can lead to a finite mean overlap q, since the
DP tends to minimize locally its energy even in a higher
than average potential.

Conclusions. In summary, our results represent the
first analytical theoretical predictions on the universal
aging form for the two-time correlations of the KPZ
equation (1), that remarkably fit experimental and nu-
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merical data. It therefore gives a quantitative prediction
for the crossover of the distribution of the fluctuations
h̃12 to the stationary state (i.e. the Baik-Rains distri-
bution) as t2/t1 → 1+, and confirms for the first time
the breaking of ergodicity in the KPZ time evolution
from the droplet initial condition. Both are proven to be
universal properties shared by all growth processes in the
KPZ class. This universality in multi-time correlations,
accompanied with ergodicity breaking could be explored
in a broader class of growth problems both within and
beyond the KPZ class [42]. In expanding geometries,
we expect similar persistence of memory when the
spatial scale of dynamical correlations, x ∼ tζ1 (ζ = 2/3
for KPZ) grows slower than the expanding substrate
radius (here ∼ t1). It should also be relevant for other
non-equilibrium systems, such as driven Bose-Einstein
condensates [43] and genetic segregation in expanding
bacterial colonies [14], both shown to relate to KPZ.
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