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The nature of the magnetic structure arising from ion specular reflection in shock compression
studies is examined by means of 1d particle in cell simulations. Propagation speed, field profiles
and supporting currents for this magnetic structure are shown to be consistent with a magnetosonic

soliton.

Coincidentally, this structure and its evolution are typical of foot structures observed

in perpendicular shock reformation. To reconcile these two observations, we propose, for the first
time, that shock reformation can be explained as the result of the formation, growth and subsequent
transition to a super-critical shock of a magnetosonic soliton. This argument is further supported
by the remarkable agreement found between the period of the soliton evolution cycle and classical
reformation results. This new result suggests that the unique properties of solitons can be used
to shed new light on the long-standing issue of shock non-stationarity and its role on particle

acceleration.

Introduction.— Collisionless shocks have been inten-
sively studied since the late 1950’s by virtue of of the
role they are believed to play in plasma heating and
charged particle acceleration (see, e. g., Refs. [I-7] and
references therein). One of the most important features
in high Mach number shocks is the specular reflection
of upstream ions, which serves as an energy dissipation
mechanism [8] to satisfy to shock conservation equations:
ion specular reflection is paramount to both ion acceler-
ation and shock structure.

Further to its role in ion acceleration, ion specular re-
flection is responsible for the non-stationarity of quasi-
perpendicular shocks. This temporal variability has
been demonstrated through numerical simulations (see,
e. g., Refs [9-13]), observations [14-17] and experi-
ments [18].  Although four different non-stationarity
mechanisms have been suggested in full generality [5],
the most likely candidate for explaining shock reforma-
tion in a 1-d exactly perpendicular shock (6 = 90°, with
0 the angle between the upstream magnetic field and the
shock normal) is the so-called self-reformation mecha-
nism (see, e. g., Ref. [7]). This self reformation cycle
can be summarized as follows. First, ions reflected by
the shock form a foot ahead of the ramp. Due to the
gyro-motion, these reflected ions pile up upstream of the
foot at a distance slightly smaller than an ion gyro-radius
ahead of the shock ramp, and create local magnetic field
and density maxima there. Through a feedback mecha-
nism, this foot then grows until it becomes as large as the
initial shock ramp, effectively becoming the new ramp.
Finally, this new ramp reflects incoming ions and the
process repeats, with the shock advancing in a step-wise
fashion. Numerical simulations suggest that the onset
of this non-stationary reformation process is conditioned

by large enough Mach number [19-22] and fraction of in-
coming ions reflected by the shock [19], and low enough
ratio of plasma to magnetic pressure S [19-22] and ion
thermal velocity to shock velocity ratio [20].

When non-stationarity conditions are met, the shock
features change markedly over the course of a reformation
cycle. Shock potential and shock ramp width display
oscillations with a period of roughly 0.2 — 0.3 times the
upstream ion gyro-period [4, 23, 24]. Consistent with
these field oscillations, a complex and non-stationary ion
dynamic is observed [25-29].

Studying the interaction of an exploding plasma propa-
gating through a background plasma, Yamauchi and Oh-
sawa [30] showed that the magnetic deflection of an ion
beam can lead to the formation of a magnetosonic pulse
or soliton. Identifying the strong similarities existing be-
tween this pulse and the magnetic bump formed over the
course of the magnetic shock compression of a plasma
channel [31], Ohsawa conjectured [32] that the magnetic
bump observed in compression simulation results is in
fact a magnetosonic pulse.

Solitons are one of the two kinds of stationary solutions
to the Korteweg - de Vries (KdV) equation which can
describe the propagation of weakly dispersive non-linear
waves [33]. In particular, magnetosonic solitons are soli-
ton solutions for the KdV equation derived for magne-
tosonic waves [34, 35]. A remarkable property of solitons
is their stability with respect to interactions: they pre-
serve their shape and speed after collision [36], behaving
in some ways like particles. Beyond these unique physical
properties, the concept of soliton enabled major theoret-
ical developments in non-linear wave physics.

In this Letter, we report on the use of particle in cell
(PIC) simulations to expose, for the first time, the role



TABLE I. Upstream dimensionless plasma parameters: ther-
mal speed, Debye length, gyro-frequency, plasma frequency
and Larmor radius.

Parameter Electrons Protons
Bin 243 0.057
AD 0.0088  0.0088
Q. 1.84 103 1
Gp 1.18 10* 2.75 107
e 0.057 2.43

of magnetosonic solitons in the well-known shock self-
reformation process in perpendicular shocks. We analyze
the properties of the magnetic foot formed as a result of
ion specular reflection at the shock front, confirming Oh-
sawa’s conjecture [32] and demonstrating that this foot
actually evolves into a magnetosonic soliton. We also
show that the growth of this soliton eventually leads to
the formation of a super-critical shock, revealing the key
role of this soliton in the shock reformation mechanism.
Finally, we discuss the implications of these new findings.

Numerical model.— Simulations are carried out using
the parallel fully electromagnetic relativistic PIC code
Epoch [37]. A quarter sine magnetic compression ramp
is generated at the left boundary of the 1d domain and
propagates towards a pre-magnetized plasma slab, simi-
larly to what was done in Ref. [31]. However, as opposed
to this previous study, there is no symmetrical compres-
sion ramp generated at the right boundary in the simula-
tion results presented in this Letter. When the compres-
sion ramp reaches the plasma slab, a shock wave devel-
ops and propagates to the right as illustrated in Figure 1.
The computational domain is made of 2.5 10° cells along
x, with a spatial resolution Az of one cell per Debye
length. The initial number of particles per cell per species
is 20. Both the upstream magnetic field By and the bias
magnetic field associated with the compression ramp are
along z. Physical mass ratio me/m, = 2 ~ 1/1836 is
used. The time step is Ax/c, with ¢ the speed of light.
Dimensionless quantities are indicated by a tilde ~, with
time, length, speed and magnetic field normalized by the
inverse of the upstream ion cyclotron frequency Q; *,
the upstream electron skin depth d. = ¢/wpe, the up-
stream Alfven velocity v, and the upstream magnetic
field By, respectively. The pre-magnetized plasma slab
parameters, listed in Table , correspond to the upstream
plasma parameters.

Foot formation and growth.— Figure 2 shows the on-
set and growth of the magnetic bump ahead of the shock
ramp. Consistent with theory [38, 39], phase space dis-
tribution confirmed that the formation of this bump re-
sults from the specular reflection of upstream ions by
the shock [31]. For At ~ 0.7 (f ~ 1.5) after upstream
ions began being specularly reflected by the shock, local
magnetic field and density maxima are observed at the
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FIG. 1. a) Normalized magnetic field contours. The upper
left corner (left of the black dotted line) is the vacuum region.
The lower right corner is the upstream plasma. The magnetic
bump, visible as a narrow peak to the right of the shock front,
grows with time. b) Mach number vs. time. M increases
almost linearly from 1.8 to 3.5 for 0.95 < ¢ < 2.4. Past
t ~ 2.4, M begins to plateau.

edge of the foot region. At this instant, the length of the
foot is I ~ 30. Introducing pps the upstream gyro-radius
of an ion specularly reflected with a velocity Mv4, the
foot length writes elM ~'py;. Although the distance be-
tween the magnetic bump maximum and the shock ramp
remains roughly equal to 30 d. for 1.5 < £ < 2.2, the
length of the foot grows to reach [ ~ 60 for  ~ 2.2. For
the M ~ 2 shock found at the onset of specular reflection
[see Figure 1a)], [ ~ 60 is equivalent to 0.7 pas, which is
in remarkable agreement with the 0.68 pj; obtained from
theory [39] and observation [40] for a super-critical per-
pendicular shock.

In view of the good agreement identified between sim-
ulation results and classical attributes of the magnetic
foot which is commonly found in front of super-critical
shocks, we further analyze the properties of this mag-
netic bump with the goal of shedding new light on the
structure of super-critical perpendicular shocks.

Magnetosonic soliton— We first look at the phase ve-
locity of the magnetic structure. Figure 3 shows the time
evolution of the position of the pulse maximum, along
with the amplitude B,, of the pulse. Here the maxi-
mum’s abscissa is re-scaled, with s = 2(1 + B,,) " 'edi
and 6% = 7 — #(f = 1.485). In the (s,) coordinates used
in Figure 3, we notice that the pulse displacement can be
well fitted by a linear function of slope 1 for 1.8 < t<2.2.
In other words, the pulse’s propagation speed is propor-
tional to (14 B,,) over this period, while B,, grows from
1.8 to roughly 3. This scaling is characteristic of mag-
netosonic solitary pulses or solitons, which have a phase
velocity vy = va(l 4 B,,)/2 [34, 41-43]. Note that this
is also the propagation velocity for the transverse elec-
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FIG. 2. Normalized magnetic field profiles at various times
showing the onset and growth of a magnetic structure ahead
of the shock front.

tric field, density and electric potential as the maxima of
these different quantities in the pulse are collocated.
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FIG. 3. Time evolution of the pulse’s parameters. Red open
circles show the re-normalized abscissa of the magnetic pulse
maximum (lower horizontal axis), with 6% = & — (I = 1.485).
Grey crosses indicate the pulse amplitude Bum (upper horizon-
tal axis). The black dash-dotted curve s = £ 4 ¢ has a slope
equal to 1, typical of magnetosonic solitons.

We now turn our attention to the profiles of normalized
electric potential ep = ep/(2myva?), density 7 = n/no,
transverse electric field E, = E,/(v4Bo) and transverse
current densities jy First order expansion for the so-
lutions of the Korteweg - de Vries (KdV) equation de-
rived for perpendicular magnetosonic waves [34, 35] in-
dicate analogous profiles for B — 1, @ — 1, Eu and @.
These quantities are plotted in Figures 4a), 4c) and
4e) for three different instants during the pulse growth
(t = 1.58,1.87 and 2.16, shown by the horizontal grey

dotted lines in Figure 3). Looking at Figure 4, we in-

3

deed note a strong correlation between B - 1,n—1, E’y
and @, confirming the similarities with the field struc-
ture of a magnetosonic soliton. The density follows very
closely the evolution of the magnetic field at all times, so
that B/n is nearly constant. The transverse electric field
(plotted against the right vertical axis) scales roughly as
3.3(f3 — 1) for 1.8 < t < 2.2. Finally, the amplitude of
the potential jump fits quite well to the theoretical value
Y = 2myva®(M,, — 1)/e, with M,, = (1 + B,,)/2 the
Mach number of the pulse (here M,, ~ 1.25,1.6 and 2
for { = 1.58,1.87 and 2.16), obtained for a non-linear
magnetosonic pulse [6, 42, 44].

The evolution of transverse current densities, plotted
in Figures 4b), 4d) and 4f) indicates that the current
structure supporting the magnetic field bump is essen-
tially an electron current, that is to say 51, ~ 51,6 The
small negative ion transverse current density jy is consis-
tent with the magnetic deflection of specularly reflected
ions. On the other hand, the electron current density jye
exhibits peaks of opposite signs on either side of the mag-
netic field structure. This becomes particularly marked
when the pulse is well formed (£ = 2.16). This feature is
typical of perpendicular magnetosonic solitons, of which
the structure is determined by transverse electron cur-
rents under the hypothesis of charge-neutrality [6, p.156]

From these three characteristics (propagation speed,
self-similarities between B — 1, 71 — 1, Ey and ¢, and
transverse currents), we conclude that the foot structure
observed as a result of ion specular reflection by the shock
ramp is a magnetosonic soliton.

Super-critical transition and reformation.— When the
pulse reaches B, ~ 3 (for 1 ~ 2.2), a relatively sud-
den transition occurs, with the pulse amplitude growing
rapidly to reach a value close to the one found down-
stream of the shock. This rapid growth takes place at
the rear of the magnetic foot structure, as illustrated in
Figure 5a). Concurrent ion specular reflection by this
new shock front is observed. This process is clearly vis-
ible in the form of a fast ion population (0, ~ 5 in the
lab frame) in front of the pulse at £ = 2.59 in Figures 5b)
and 5¢). The overgrown pulse then acts as the new shock
front, quite similar to the step-wise advance commonly
described in reforming shocks.

The fact that this transition and associated onset of
specular reflection by the pulse are observed for By, ~3
provides further evidence for the formation of a magne-
tosonic soliton. As a matter of fact, the measured Mach
number at the transition My, = (14 B,,)/2 ~ 2 is exactly
the critical Mach number obtained for a magnetosonic
soliton with vanishing resistivity [2, 41, 42, 45].

Finally, we notice (not shown here) that a new foot
structure with a local maximum is formed for t ~ 3.44
as a result of ion specular reflection by the pulse. By
identification with the foot structure observed in front of
the initial shock for £ ~ 1.65, and although only one cy-
cle is simulated here, we infer a periodicity At ~ 1.8, or
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FIG. 4. Fields profiles at three different instants during the
magnetosonic pulse growth: ¢ = 1.58 a) and b), £ = 1.87
c) and d) and ¥ = 2.16 e) and f). Normalized magnetic
field (black), transverse electric field (green), electric poten-
tial (blue) and density (red) [a), ¢) and e)] and normalized
electron (blue), ion (red) and total (black) transverse current
densities [b), d) and f)].

At ~ 0.3 x 27 /Q.;. Inasmuch as this value is in remark-
able agreement with the period of a collisionless shock
reformation cycle [4, 23, 24], we surmise that shock ref-
ormation is here mediated by the formation and sub-
sequent growth beyond the critical Mach number of a
magnetosonic soliton.

Conclusions.— We studied the formation of a mag-
netic pulse in fast compression experiments using 1d PIC
simulations. We showed that this magnetic pulse, formed
through ion specular reflection at the shock ramp, ex-
hibits attributes common to the magnetic foot struc-
ture which is typically found in perpendicular collision-
less shocks.

Through a detailed analysis of the properties of this
pulse, in particular its propagation speed, its profile, and
its supporting current structure, we inferred that it is
actually a magnetosonic soliton. This soliton grows as
it propagates upstream of the shock ramp and eventu-
ally reaches the critical Mach number M ~ 2, where-
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FIG. 5. Magnetic field profile a) and ion phase space dis-
tribution [b) and ¢)] after the magnetosonic pulse became
super-critical (¢ = 2.59).

upon it transitions to a super-critical shock. Thenceforth
the overgrown pulse begins to reflect incoming ions, and
serves as the new shock ramp. Finally, we showed that
the period for this shock front step propagation through
the formation and subsequent growth of a soliton is in
remarkable agreement with the period of the well known
self-reformation cycle in collisionless shocks.

In view of the strong similarities found between this
mechanism and the self-reformation process, we surmise
that our simulations reveal, for the first time, the mediat-
ing role of magnetosonic solitons in quasi-perpendicular
shock reformation.

In showing that a large-amplitude pulse can create a
new soliton due to kinetic and fluid effects, the present
work brings to light novel facets of the evolution of mag-
netosonic pulses and of the creation of shock waves in
astrophysical plasmas. In particular, these results pave
the way for applying the large existing body of work on
solitons to shed new light on the long-standing issue of
shock non-stationarity and its role on particle accelera-
tion. Incidentally, these results open new and promis-
ing perspectives for the use of fast magnetic compression
in order to mitigate electron dephasing in plasma-based
particle accelerators [46]: plasma density profile near the
beam axis could in principle be tailored from hollow to
peaked-on-axis by taking advantage of the colliding prop-
erties of the counter-propagating solitons formed ahead
of the shock.
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