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We show that steady nonuniform motion of a medium through an optical resonator can yield light
amplification at the resonator frequency. High gain can be achieved if at the generated frequency
the medium refractive index is close to zero or medium has very strong frequency dispersion. We
also discuss an analogy between light amplification by a moving medium and generation of sound
waves when gas flows along a tube with acoustically closed-open boundaries.

It is know for more than a century that laminar mo-
tion of air through pipes can result in generation of sound
waves. Rijke tube is an example of thermoacoustic os-
cillations that dates back to 1859 [1]. Rijke tube is a
straight tube with the heated gauze placed inside. Air
flows through the tube and heats up when passing the
gauze. Depending on the position of the gauze and its
temperature, pressure oscillations with amplitude of sev-
eral hundred Pa at one of the tube’s natural frequency
can be generated [2]. There are other instabilities which
yield generation of waves in acoustics and hydrodynam-
ics. An example is the Kelvin–Helmholtz instability oc-
curring when there is a velocity difference across the in-
terface between two fluids. The instability manifests,
e.g., in waves on the water surface when wind is blowing
over water.

Motivated by the effect of sound wave generation in a
steady flow of gas or liquid through pipes, we here explore
a possibility of generation of coherent light by a dielectric
medium moving through an optical cavity. Measurement
of the light velocity in a moving dielectric medium by
Fizeau in 1851, as well as the Michelson-Morley experi-
ment, was an important step for the later development
of special relativity [3]. In the Fizeau experiment two
light rays were investigated traveling in the direction of
water flow and opposite to it. The original intention of
the experiment was to measure the absolute motion of
the earth. The result, as is well known, was not in sup-
port of the original ether idea but instead with Einstein’s
addition formula,

u =
c+ nV

n+ V/c
,

where u is the light velocity in the laboratory system, c
is the speed of light in vacuum, n is the water refractive
index in its proper frame and V is the water velocity.
The Fizeau experiment has later been repeated with the
use of ring lasers [4, 5].

If a uniform medium moves with velocity V then in
the laboratory frame evolution of the electric field is de-
scribed by the following equation [6]

n2 ∂
2E

∂t2
− c2∇2E + 2(n2 − 1)V·∇

(

∂E

∂t

)

= 0, (1)

where n is the refractive index. Assuming that E(t, r) =
e−iωtE(r) Eq. (1) yields the following equation for E(r)

n2ω2E + c2∇2E + 2i(n2 − 1)ωV·∇E = 0. (2)

If V ≪ c the last term in Eq. (2) can be considered
as a small perturbation. Multiplying both sides of Eq.
(2) by E∗ and integrating over volume of the system we
obtain

ω2 = −c2
∫

drE∗∇2E
∫

drn2|E|2
+ 2iω

∫

dr(1 − n2)E∗
V·∇E

∫

drn2|E|2
. (3)

Writing ω = ωm + δωm, where ωm are normal mode fre-
quencies for non moving medium and neglecting (δωm)2,
we find the following expression for the small correction
to the frequency produced by motion of the medium

δωm = i

∫

dr(1 − n2)E∗
V·∇E

∫

drn2|E|2
. (4)

In Eq. (4) E is the electric field of the normal mode
ωm for non moving medium. If δωm has an imaginary
part the system is unstable towards the generation of
electromagnetic waves in a similar way as the flow of
gas through pipes can be unstable towards generation of
sound waves.
Here we consider a system shown in Fig. 1. Namely,

in the present setup a liquid or a gas medium flows in
a tube that occupies region of space −L/2 < z < L/2.
The velocity V of the liquid can be approximated as

V (z) =

{

V0, 0 < z < L/2
−V0, −L/2 < z < 0

, (5)

where V0 could be positive or negative depending on the
direction of the flow. We assume that the tube is a res-
onator for the electromagnetic field which for V = 0 has
the following even normal modes inside the cavity

E(r) = E0 cos (kmz) , (6)

where km = nωm/c, n is the medium refractive index and
ωm are the resonator frequencies

ωm =
(1 + 2m)πc

nL
, (7)



2

and m = 0, 1, 2, . . . is an integer number. There are also
odd normal modes in the cavity. However, they are not
amplified in the present geometry and will not be consid-
ered here. Eq. (6) is a good approximation if orifice in the
middle part of the cavity is sealed with a porous dielec-
tric material with the medium flowing through. Under
this condition the field inside the cavity approximately
depends only on z.
Plugging Eq. (6) into Eq. (4) and integrating over the

cavity volume we obtain the following expression for the
gain per unit time

G = −iδωm = 2
(n2 − 1)

n2

V0

L
, (8)

which is given by the same formula for all even normal
modes. In Eq. (8) the medium velocity V0 could be
positive or negative. V0 < 0 means that the flow direction
is opposite to those shown in Fig. 1.
For an arbitrary nonuniform velocity profile in the cav-

ity V(r) the gain per unit time is determined by the
Fourier component of V(r). Namely, Eq. (4) yields that
gain for the cavity mode (6) is

Gm =
(n2 − 1)km

n2V

∫

drVz(r) sin (2kmz) , (9)

where integration is taken over the cavity volume V .
Eq. (8) shows that gain can be large for small enough

refractive index n. For example, gain for the fundamen-
tal cavity mode with frequency ω0 = πc/nL becomes
comparable with ω0 provided n ≃ |V0|/c. If L = 1 cm
and n = 10−5 then ω0 = 1016 s−1, while for V0 = −10
cm/s Eq. (8) yields high value for the gain per unit time
G = 2× 1011 s−1 comparable to the gain in active media
of lasers [7]. In our case, however, the light amplifica-
tion mechanism is different from those in lasers. Namely,
in a laser light is amplified at the expense of the inter-
nal energy stored in atoms and laser generation usually
requires population inversion. In the present mechanism
the energy comes from the kinetic energy of the collective
atomic motion and no initial population of atoms in the
excited state is necessary. To achieve light amplification
G must be greater than losses caused by atomic collisions
and field leakage out of the cavity.
To check our analytical prediction of light amplifica-

tion we solve Eq. (1) for E(t, z) numerically assuming
velocity profile V (z) = V0 sin(2πz/L), refractive index
n = 1.8 and the following boundary E(t,±L/2) = 0 and
initial E(0, z) = E0 cos(πz/L), ∂E(0, z)/∂t = 0 condi-
tions. In Fig. 2 we plot electric field at the middle of
the cavity E(t, 0) as a function of time for V0 = 0.05c (a)
and V0 = −0.05c (b). The simple one-dimensional veloc-
ity profile we use in numerical simulations is not realistic,
however, it can be used to check correctness of the gen-
eral analytical result (9). Numerical calculations show
that motion of the medium yields light amplification if
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FIG. 1. Dielectric medium flows in a tube with mirrors at the
edges. The system is a resonator for electromagnetic field.
The orifice in the middle part of the cavity is sealed with a
porous dielectric material with the medium flowing through.
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FIG. 2. Electric field at the cavity center as a function of
time for the fundamental cavity mode obtained by numerical
solution of Eq. (1) with refractive index n = 1.8 and velocity
profile V (z) = V0 sin(2πz/L) for V0 = 0.05c (a) and V0 =
−0.05c (b). (c) Gain per unit time G as a function of V0

obtained by numerical solution of Eq. (1) (dots) and using
analytical formula (9) for m = 0 (solid line).

V0 > 0 (Fig. 2a) and attenuation for V0 < 0 (Fig. 2b).
In Fig. 2c we plot gain per unit time G as a function
of V0 obtained by numerical solution of Eq. (1) (dots)
and using analytical formula (9) (solid line). Excellent
agreement between the two results demonstrates validity
of Eq. (9).
Inclusion of frequency dispersion. Next we investi-

gate how dispersion modifies expression for the gain.
From Maxwell’s equations in a dielectric non magnetic
medium, assuming no macroscopic currents and charges,
we obtain the following wave equation for the transverse
field

1

c2
∂2

D

∂t2
− ε0∇

2
E = 0,
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where D is the electric displacement vector. Fourier
transform yields

ω2

c2
D(ω,k)− ε0k

2
E(ω,k) = 0.

If there is frequency dispersion then relation between
D(ω,k) and E(ω,k) is

D(ω,k) = ε0ε(ω)E(ω,k)

which gives equation for the electric field

ω2

c2
ε(ω)E(ω,k)− k2E(ω,k) = 0.

If the medium is moving with nonrelativistic velocity V

then, due to Doppler effect, ω and k must be replaced by
[8]

ω → ω −V · k, k → k−
ω

c2
V,

and we obtain

1

c2
[

ω2 − 2V · kω
]

ε(ω −V · k)E(ω,k)

−
(

k2 − 2
ω

c2
V · k

)

E(ω,k) = 0.

Approximating ε(ω −V · k) by the Taylor expansion in
the first order

ε(ω −V · k) ≈ ε(ω)−
∂ε(ω)

∂ω
V · k

we find
[

ω2ε(ω)− 2ω

(

ε(ω)− 1 +
ω

2

∂ε(ω)

∂ω

)

V · k

]

E(ω,k)

−c2k2E(ω,k) = 0.

Taking the inverse Fourier transform over k we obtain
the following equation for E(ω, r)

ε(ω)ω2
E(ω, r) + c2∇2

E(ω, r)+

2i

(

ε(ω)− 1 +
ω

2

∂ε(ω)

∂ω

)

ω(V·∇)E(ω, r) = 0. (10)

Comparing this equation with Eq. (2) we see that fre-
quency dispersion modifies expression for the gain (8) by

replacing n2−1 with n2−1+ ω
2

∂ε(ω)
∂ω

. As a result, formula
for the gain (8) becomes

G =
2V0

n2L

(

n2 − 1 +
ω

2

∂ε(ω)

∂ω

)

. (11)

FIG. 3. Geometry of the closed-open tube with gas flowing
along the tube axis. Porous plate at the end provides acous-
tically closed boundary condition.

Eq. (11) indicates that gain can be also large for the
medium with strong dispersion and not only for the
medium with small refractive index. Taking into account
formula for the group velocity of light in a dispersive
medium c/Vg = ∂(nω)/∂ω and the relation ε(ω) = n2(ω)
one can rewrite Eq. (11) as

G =
2

n2

(

nc

Vg

− 1

)

V0

L
. (12)

Thus, high gain can be achieved in a medium for
which light group velocity |Vg| ≪ c. If nc/Vg is a
large positive (negative) number then there is gain if
V0 > 0 (V0 < 0). Slow-light propagation effects typically
originate from electromagnetically induced transparency
(EIT). Such a phenomenon arises from quantum inter-
ference and is characterized by a strong enhancement
of dispersion within a narrow frequency window around
the medium resonance where absorption turns out to be
largely quenched. EIT media are ideal candidates for the
observation of extremely low or negative group velocities.
In such media, the group velocity can in fact be readily
tuned over a wide range of values directly by varying the
coupling and probe detunings in a standard three-level Λ
configuration.
Group velocity of about 8 m/s was achieved in a Teflon

coated cell with rubidium vapor [9]. In this experiment
the factor nc/Vg is of the order of 4 × 107. For such
group velocity, L = 1 cm and V0 = 10 cm/s Eq. (12)
yields gain per unit time G ≈ 109 s−1. The EIT effect
strongly suppresses absorption at the line center yielding
nearly perfect transparency for strong coherent coupling
beam. As a result, the loss rate can be made smaller than
G leading to light amplification if the cavity frequency
matches the atomic transition frequency.
Analogy with generation of sound waves. Similar mech-

anism can yield generation of sound waves due to motion
of the medium. Since acoustic experiment is much easier
to realize than its optical counterpart we next discuss the
acoustic analogy in detail. We consider the flow of gas
along a tube of the acoustically closed-open boundary
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type (see Fig. 3). The tube has length L and occupies a
region of space 0 < x < L . We disregard viscosity and
assume that gas temperature is constant and uniform.
The acoustically closed boundary condition can be real-
ized by a flat porous plate (located at x = 0) of sintered
material with a gas stream flowing through it at a con-
stant velocity V0 [2]. The opposite end of the tube (at
x = L) is open.
Gas dynamics is described by the equations of mass

conservation

∂ρ

∂t
+

∂ (ρV )

∂x
= 0 (13)

and momentum conservation

∂ (ρV )

∂t
+

∂
(

ρV 2
)

∂x
+

∂P

∂x
= 0, (14)

where V is the gas velocity, ρ is the gas density and P
is the pressure. We assume that gas flow is isothermal,
then equation of state reads

P = u2
sρ, (15)

where us is the speed of sound.
We solve Eqs. (13)-(15) numerically subject to the

following initial and boundary conditions

V (x, 0) = V0, ρ(x, 0) = ρ0

[

1 + 0.001 cos
(πx

2L

)]

,

(16)

∂ρ(0, t)

∂x
= 0, ρ(L, t) = ρ0. (17)

We choose L as a unit of length and L/us as a unit of
time. Gas velocity is then measured in us. Results of
numerical simulations are shown in Fig. 4. We plot
ρ(0, t) as a function of time for V0 = 0.03us (a) and
V0 = −0.03us (b). The figure shows that if flow velocity
is directed from the closed to the open end of the tube
the sound wave with wavelength 4L is excited. If flow
velocity is the opposite the wave undergoes attenuation.
In summary, we show that steady nonuniform motion

of a medium through an optical resonator can yield light
amplification at the resonator frequencies. High gain can
be achieved if at the generated frequency the medium
refractive index is close to zero or the medium has a very
strong frequency dispersion.
Liquid metals near plasma frequency are example of a

medium with small refractive index. Recently, metama-
terials with near-zero refractive index have drawn much
attention. Over the past several years, zero-index struc-
tures have been experimentally demonstrated in the mi-
crowave [10, 11], mid-IR [12], and visible regimes [13].
Strong dispersion and slow group velocities in the m/s

range have been achieved taking advantage of the elec-
tromagnetically induced transparency effect [9, 14]. The
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FIG. 4. Gas density at the closed end of the tube as a function
of time obtained by numerical solution of Eqs. (13)-(15) with
initial and boundary conditions (16), (17) for flow velocity
V0 = 0.03us (a) and V0 = −0.03us (b).

EIT effect suppresses absorption in the region of strong
dispersion yielding nearly perfect transparency. One
should mention that strongly dispersive medium support-
ing slow light also yields a remarkable enhancement of the
transverse Fresnel-Fizeau light drag effect [8].
The effect of light amplification by a moving medium

has an analogy with sound generation when gas flows
along a tube with acoustically closed-open boundaries.
We show that for such geometry there is sound gener-
ation if flow velocity is directed from the closed to the
open end of the tube. If flow velocity is the opposite the
sound waves undergo attenuation. As one can see from
Eq. (8) and Fig. 2, whether there is light amplification
or attenuation in the optical system also depends on the
flow direction. Energy for light generation is supplied
from the kinetic energy of the moving medium (see Sup-
plementary Material). This is different from the light
amplification mechanism of a conventional laser where
internal energy of the inverted medium is converted into
coherent light. However, there is some resemblance with
a free-electron laser in which a relativistic electron beam
moving freely through a magnetic structure produces co-
herent radiation.
There is also a distant similarity with the Unruh radia-

tion when a single neutral atom accelerated through vac-
uum is promoted to an excited state as if it was in contact
with a blackbody thermal field [15]. If the ground-state
atoms are accelerated through a high Q cavity the effect
is enhanced by many orders of magnitude [16]. The rea-
son is a fast nonadiabatic change of the atom-field cou-
pling at the cavity boundaries. In the present problem
nonadiabaticity also plays the key role. Namely, accord-
ing to Eq. (9), high gain can be obtained only if V(r)
substantially changes on the scale of the wavelength of
electromagnetic oscillations. However, the present effect
is collective and requires a medium with special proper-
ties to achieve high gain.
To the best of our knowledge the effect of light amplifi-

cation by a medium moving through an optical cavity is
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new. It provides interesting insights on collective inter-
action between light and matter, and, in principle, could
be useful for development of new coherent sources of ra-
diation. We further investigate the effect using energy
consideration and its acoustic analogy in Supplementary
Material.
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