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We propose an optical scheme, employing optical parametric down-converters interlaced with
nonlinear sign gates (NSGs), that completely converts an n-photon Fock-state pump to n signal-
idler photon pairs when the down-converters’ crystal lengths are chosen appropriately. The proof
of this assertion relies on amplitude amplification, analogous to that employed in Grover search,
applied to the full quantum dynamics of single-mode parametric down-conversion. When we require
that all Grover iterations use the same crystal, and account for potential experimental limitations on
crystal-length precision, our optimized conversion efficiencies reach unity for 1 ≤ n ≤ 5, after which
they decrease monotonically for n values up to 50, which is the upper limit of our numerical dynamics
evaluations. Nevertheless, our conversion efficiencies remain higher than those for a conventional
(no NSGs) down-converter.

PACS numbers: 03.67.Lx, 85.25.Cp, 42.50.Ex

Nonclassical states of light, such as single-photon
states [1–3], polarization-entangled states [4, 5] and
multi-photon path-entangled states [6–9] are essential for
linear-optical quantum computation [10], quantum com-
munication [11–13], quantum metrology [14, 15], and ex-
perimental tests of quantum foundations [16–18]. Spon-
taneous parametric down-conversion (SPDC) employing
the χ(2) nonlinearity [4] is a standard tool for generat-
ing nonclassical light. As currently implemented, SPDC
sources of nonclassical light rely on strong coherent-state
pump beams. These pumps do not suffer appreciable
depletion in the down-conversion process, meaning that
their conversion efficiencies are exceedingly low. More-
over, the number of signal-idler pairs that are emitted
in response to a pump pulse is random. To circumvent
these drawbacks, we focus our attention on SPDC using
n-photon Fock-state pumps [19]. We propose and analyze
a scheme using such pumps that interlaces SPDC pro-
cesses with nonlinear sign gates (NSGs) [10] to generate
n signal-idler pairs with unity efficiency when the down-
converters’ crystal lengths are chosen appropriately. Our
proof of unity-efficiency conversion presumes n ≫ 1 and
allows each Grover iteration to employ a different crys-
tal length. Because the precision with which those crystal
lengths must be realized becomes increasingly demanding
as n increases, we evaluate the conversion efficiencies at
a fixed crystal-length precision. Furthermore, to reduce
our scheme’s resource burden, we perform our efficiency

evaluations assuming that all Grover iterations use the
same crystal. We find that complete conversion is main-
tained for 1 ≤ n ≤ 5, and that our approach’s conversion
efficiencies—although less than 100%—still exceed those
of a conventional (no NSGs) down-converter for n val-
ues up to 50. Thus, even using the same crystal for all
Grover iterations with finite crystal-length precision, our
approach can efficiently prepare heralded single-photon
states as well as dual-Fock (|n〉|n〉) states and multi-
photon path-entangled states for n ≤ 5 [20].

We begin by solving the full quantum dynamics for
SPDC with single-mode signal, idler, and pump beams.
Conventionally, SPDC dynamics are derived under the
nondepleting-pump assumption, which treats a strong
coherent-state pump as a constant-strength classical field
throughout the nonlinear interaction. To date, SPDC
with a quantized pump field [21, 22] has only been solved
for pump-photon numbers up to 4 [23]. We construct the
SPDC solution for an arbitrary single-mode pure-state
pump as an iteration that we can evaluate numerically
for pump photon numbers up to 50. From this result, we
prove a fundamental bound on SPDC’s conversion effi-
ciency: no pure-state pump whose average photon num-
ber exceeds one can be completely converted to signal-
idler photon pairs.

Inspired by the Grover search algorithm’s use of am-
plitude amplification [24, 25], we show how the preceding
limit on SPDC’s conversion efficiency can be transcended
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by employing NSGs in between SPDC processes. In par-
ticular, we show that our method increases the efficiency
with which all pump photons are converted to signal-idler
pairs, enabling complete pump conversion to be achieved
for Fock-state pumps when the down-converters’ crystal
lengths are chosen appropriately. This perfect conver-
sion is deterministic if the NSGs are implemented using
nonlinear optical elements. It is postselected—based on
ancilla-photon detections—if the NSGs are realized with
only linear optics.
Our technique for unity-efficiency parametric down-

conversion (UPDC) has transformative applications in
quantum metrology, quantum cryptography and quan-
tum computation. In quantum metrology, an interfer-
ometer whose two input ports are illuminated by the
signal and idler of the n-pair (dual-Fock) state |n, n〉
achieves a quadratic improvement in phase-sensing ac-
curacy over what results from sending all 2n pho-
tons into one input port [14]. Single-mode SPDC
yields a thermal distribution of |n, n〉 states, however,
which erases the preceding entanglement-based advan-
tage [15], whereas UPDC delivers the desired dual-Fock
state for this purpose (Sec. II of [26]). The dual-Fock
state turns out to be extremely valuable for preparing
heralded Greenberger-Horne-Zeilinger (GHZ) and other
path-entangled states with high probability, which are
crucial resources for device-independent quantum cryp-
tography [27, 28], quantum secret sharing [29], and test-
ing quantum nonlocality [30].
Our development begins by addressing the t ≥ 0

quantum dynamics for parametric down-conversion with
single-mode signal, idler, and pump beams. The relevant

three-wave-mixing interaction Hamiltonian is [21]

Ĥ = i~κ
(

â†sâ
†
i âp − â†pâsâi

)

, (1)

where â†j (âj) is the photon creation (annihilation) oper-
ator and j = s, i, p denotes the signal, idler, and pump,
respectively. The coefficient κ, which is assumed to be
real valued, characterizes the nonlinear susceptibility χ(2)

of the down-conversion crystal [21]. We assume SPDC
with type-II phase matching, so that the signal and idler
beams are orthogonally polarized and the pump is co-
polarized with the idler. This orthogonality is crucial to
realizing the Grover iteration, as detailed below.

We restrict ourselves to initial states of the form
|Ψ(0)〉 = ∑∞

n=0 cn |Ψn(0)〉, where
∑∞

n=0 |cn|2 = 1, and

|Ψn(0)〉 =
n
∑

k=0

f
(n)
k (0) |k, k, n− k〉 , (2)

with
∑n

k=0 |f
(n)
k (0)|2 = 1, and |ns, ni, np〉 being the Fock

state containing ns signal photons, ni idler photons, and
np pump photons. For these initial states, the SPDC dy-
namics occur independently in the subspaces spanned by
{|0, 0, n〉 , |1, 1, n− 1〉 , . . . , |n, n, 0〉 : 0 ≤ n < ∞}, whose
basis states comprise all possibilities from no conversion
to complete conversion of pump photons into signal-idler
photon pairs. The decoupling between these n-pump-
photon subspaces allows us to solve the Schrödinger equa-
tion, i~ |Ψ̇(t)〉 = Ĥ |Ψ(t)〉 for t ≥ 0, by solving the cou-
pled ordinary differential equations

ḟ
(n)
k (t) =















−κ
√
nf

(n)
1 (t), k = 0

κ
[

k
√
n− k + 1f

(n)
k−1(t)− (k + 1)

√
n− kf

(n)
k+1(t)

]

, k = 1, 2, . . . , n− 1

κnf
(n)
n−1(t), k = n,

(3)

given the initial conditions {f (n)
k (0) : 0 ≤ k ≤ n}. We

then get the n-pump-photon subspace’s state evolution,

|Ψn(t)〉 =
n
∑

k=0

f
(n)
k (t) |k, k, n− k〉 , (4)

from which the full state evolution,

|Ψ(t)〉 =
∞
∑

n=0

cn |Ψn(t)〉 , (5)

follows. We have obtained analytical solutions to Eqs. (3)
for 0 ≤ n ≤ 4, and numerical solutions for 5 ≤ n ≤ 50.

The nth subspace’s quantum conversion efficiency,

µn(t) ≡
n
∑

k=1

k|f (n)
k (t)|2
n

, when |Ψn(0)〉 = |0, 0, n〉, (6)

is the fraction of the initial n pump photons that are con-
verted to signal-idler photon pairs. The down-converter’s
total quantum conversion efficiency is then

µ(t) ≡
∑∞

n=0 |cn|2nµn(t)
∑∞

n=0 |cn|2n
. (7)

Because
∑n

k=0 |f
(n)
k (t)|2 = 1 for all n, neither µn(t) nor

µ(t) can exceed unity. The central question for this paper
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is how to obtain unity-efficiency conversion, which occurs

for µn(t) when |f (n)
n (t)| = 1, and for µ(t) when |f (n)

n (t)| =
1 for all n with nonzero cn.
Our analytic solutions to Eqs. (3) for 1 ≤ n ≤ 4

with |Ψn(0)〉 = |0, 0, n〉 show that maxt[µn(t)] decreases
with increasing n from maxt[µ1(t)] = 1. This downward
trend in conversion efficiency continues for 5 ≤ n ≤ 50,
where we employed numerical solutions because the Abel-
Ruffini theorem shows that polynomial equations of fifth
or higher order do not have universal analytic solutions.
In other words, when the down-converter crystal is driven
by vacuum signal and idler and an n-photon Fock-state
pump, only the n = 1 case can yield unity efficiency.
Moreover, because mixed states are convex combinations
of pure states, exciting the down-converter with a mix-
ture of |0, 0, n〉 states also fails to realize complete con-
version of pump photons to signal-idler photon pairs.
To overcome this fundamental limitation we interlace

SPDC processes with NSGs. In Grover search [24], NSGs
serve as quantum oracles that flip the sign of the marked
state |n〉 by means of the unitary transformation

U
(n)
NSG

n
∑

j=0

αj |j〉 =
n
∑

j=0

(−1)δjnαj |j〉 , (8)

where δjn is the Kronecker delta function. The U
(2)
NSG

gate, which is essential to linear-optical quantum com-
puting’s construction of a CNOT gate [10], has a nonde-
terministic implementation that only requires linear op-
tics and single-photon detection. A deterministic realiza-

tion of U
(2)
NSG is possible through use of a Kerr nonlinear-

ity [31]. Nondeterministic U
(n)
NSG gates have postselection

success probabilities with O(1/n2) scaling [32].
Grover search [24] finds the marked item in an unsorted

data set of size N in the optimal [33] O(
√
N) steps, as

opposed to the best classical algorithm’s requirement of
O(N) steps. To reap Grover search’s benefit in our con-
text we perform it in the Fock basis. In particular, given
a Fock-state input |0, 0, n〉, with n ≥ 2, our UPDC pro-
cedure uses O(

√
n) iterations of Grover search—in which

an iteration consists of an NSG followed by SPDC—to
convert that input to the dual-Fock-state output |n, n, 0〉
with unity efficiency for n sufficiently large. (In Sec. I of
[26] we show that unity-efficiency conversion of |0, 0, 1〉 to
|1, 1, 0〉 can be realized with a single SPDC stage.) Our
UPDC procedure is as follows.

I. Initialization: Initialize the UPDC procedure
by sending signal, idler, and pump inputs in the
joint state |0, 0, n〉 into a length-L0, type-II phase-
matched χ(2) crystal for an interaction time t0 =
L0/v, where v is the in situ propagation velocity,
to obtain the initial state [34]

|Ψ0〉 =
n
∑

k=0

f
(n,0)
k (t0) |k, k, n− k〉 , (9)

where the {f (n,0)
k (t0)} are solutions to (3) for the

initial conditions f
(n,0)
k (0) = δk0.

II. Sign flip on the marked state: Begin the mth
Grover iteration by sending the signal, idler, and
pump outputs from the (m−1)th iteration—whose
joint state is

|Ψ′
m−1〉 =

n
∑

k=0

f
(n,m−1)
k (tm−1) |k, k, n− k〉 , for m ≥ 1,

(10)
where |Ψ′

0〉 ≡ |Ψ0〉—through a polarization beam
splitter (PBS) to separate the signal and idler into
distinct spatial modes with the pump accompany-

ing the idler. Then apply the U
(n)
NSG gate to the

signal mode in Eq. (10) to produce the state

|Ψm〉 =
n
∑

k=0

f
(n,m)
k (0) |k, k, n− k〉 , (11)

where f
(n,m)
k (0) = (−1)δknf

(n,m−1)
k (tm−1), and use

another PBS to recombine the signal, idler, and
pump into a common spatial mode without chang-
ing their joint state.

III. Rotation toward the marked state: Complete the
mth Grover iteration by sending the signal, idler,
and pump in the joint state |Ψm〉 into a length-Lm,
type-II phase-matched χ(2) crystal for an interac-
tion time tm = Lm/v to obtain the state

|Ψ′
m〉 =

n
∑

k=0

f
(n,m)
k (tm) |k, k, n− k〉 , (12)

where the {f (n,m)
k (tm)} are solutions to (3) for the

initial conditions {f (n,m)
k (0)}.

IV. Termination: Repeat Steps II and III until the
probability that Step III’s output beams are in the
desired fully converted state is sufficiently close to
unity.

Below we explain how Steps I–III can drive the conver-
sion efficiency arbitrarily close to unity, and how, for n
sufficiently large, this can be done in O(

√
n) Grover iter-

ations.
For an initial state |0, 0, n〉, the Fock-state amplitudes

occurring in our UPDC procedure are real valued. Thus,
for our present purposes, we can reduce the UPDC pro-
cedure’s state evolution to SU(2) rotations by writing

|Ψ′
m〉 =

√

1− [f
(n,m)
n (tm)]2 |0〉+ f (n,m)

n (tm)|1〉, (13)

for m ≥ 0, where |1〉 ≡ |n, n, 0〉 is the fully converted
state, and |0〉 is the m-dependent, normalized state sat-
isfying 〈1|0〉 = 0. In Sec. I of [26] we show that with L0

appropriately chosen we can realize

|Ψ′
0〉 = cos(θg/2) |0〉+ sin(θg/2) |1〉 , (14)
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for small values of θg; e.g., θg ≃ 1/
√
n for large n. There

we also prove that our UPDC procedure, with the {Lm}
appropriately chosen, can produce

|Ψ′
m〉 = cos[(2m+ 1)θg/2] |0〉+ sin[(2m+ 1)θg/2] |1〉 ,

(15)
for m > 1. Terminating the UPDC procedure after M
Grover iterations, where M is the largest integer satisfy-
ing (2M + 1)θg ≤ π, then gives a sin2[(2M + 1)θg/2]
conversion efficiency. Rewriting this conversion effi-
ciency as 1 − cos2[(π − (2M + 1)θg)/2] and choosing L0

such that 0 < (π − (2M + 1)θg)/2 ≪ 1, we find that
1− cos2[(π− (2M +1)θg)/2] ≈ (π− (2M +1)θg)

2/8 ≪ 1.
Moreover, for θg ≃ 1/

√
n with n ≫ 1, we have that this

near-unity conversion efficiency is realized with M be-
ing O(

√
n), meaning that

√
n iterations suffice to achieve

that performance.

Our proof that UPDC can achieve unity-efficiency con-
version of an initial |0, 0, n〉 state to a final |n, n, 0〉 state
for n ≫ 1 allows each Grover iteration to use a crystal
of a different length, making its required resources of or-
der O(

√
n). Thus in our analytic (for 2 ≤ n ≤ 4) and

numerical (for 5 ≤ n ≤ 50) conversion-efficiency evalua-
tions we restricted our procedure’s Grover iterations to
recirculate the signal, idler, and pump beams through
a single length-L1 crystal, and we chose L0 and L1 to
maximize the conversion efficiency. However, as Eqs. (3)
evolutions have eigenmodes with associated eigenvalues
whose magnitudes grow with increasing n, the precision
to which the crystal lengths L0 and L1 must be cut grows
with increasing n. Thus, for experimental feasibility, our
conversion-efficiency optimizations took L0 and L1 to be
integer multiples of 10−3v/κ [35].

Available analytic solutions to Eqs. (3) for n ≤ 4 al-
lowed us to verify that unity-efficiency conversion can be
achieved for those pump-photon numbers; see Sec. III of
[26] for a demonstration that a single Grover iteration
suffices for n = 2. For n ∈ {2, 3, 4, 5, 6, 7, 8, 10, 20, 40, 50}
the optimized conversion efficiencies we obtained are
shown in Fig. 1. Here we see that unity-efficiency con-
version is possible for n values up to 5, using a single
Grover-iteration crystal that is cut with the assumed
length precision. Beyond n = 5, however, greater pre-
cision is presumably required. Figure 1 also includes
similarly evaluated conversion efficiencies for a conven-
tional SPDC setup, i.e., one in which a single nonlinear
crystal is employed without any NSGs. As mentioned
earlier, the conventional approach can only reach unity-
efficiency conversion for n = 1, and Fig. 1 shows that the
UPDC approach with finite crystal precision outperforms
the conventional setup with the same crystal precision
for 2 ≤ n ≤ 50. Our UPDC conversion efficiencies pre-
sume the use of deterministic (unity efficiency) NSGs,
such as can be realized under ideal conditions with a
weak Kerr nonlinearity [31] or with trapped atoms gov-
erned by the Jaynes-Cummings Hamiltonian [36]. Now
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FIG. 1. Down-conversion efficiencies for n-photon Fock-state
pumps optimized over nonlinear-crystal lengths cut to a pre-
cision of 10−3v/κ. Lower (red) curve: maximum conversion

efficiencies for a χ(2) crystal without Grover-search amplitude
amplification. Upper (blue) curve: maximum UPDC conver-
sion efficiencies, where the n = 1 point did not employ an
NSG.
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FIG. 2. UPDC runtime (defined to be MnL1/v with Mn

being the number of Grover iterations used in Fig. 1 to achieve
maximum efficiency for an n-photon pump) versus

√
n.

consider a UPDC procedure that employs
√
n Grover it-

erations to transform an n-pump-photon Fock state to
n signal-idler photon pairs using nondeterministic NSGs.
Its conversion efficiency is reduced from our deterministic
NSG result by a (1/n2)

√
n factor, owing to each of its

√
n

NSG uses having an efficiency that is bounded above by
1/n2 [32]. Furthermore, each of these nondeterministic
NSGs will require at least n single-photon ancillae [32].
The preceding efficiency optimization also permits us

to determine the runtimes for our UPDC procedure at
finite crystal-length precision, where runtime is defined
to be MnL1/v with Mn being the number of Grover iter-
ations needed to achieve the n-photon-pump’s maximum
efficiency from Fig. 1. These runtimes, which we have
plotted in Fig. 2, show the expected O(

√
n) behavior for

3 ≤ √
n ≤ 7.

At this juncture, some discussion of implementation
considerations is warranted. UPDC requires a very
strong χ(2) nonlinearity if it is to be practical. Prob-
ably the most promising candidate for implementation
is the induced χ(2) behavior of the χ(3) nonlinearity in
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a photonic-crystal fiber [37]. Such an arrangement uses
nondegenerate four-wave mixing with a strong, nonde-
pleting pump beam at one wavelength whose presence
induces a strong χ(2) for a weak SPDC pump beam at
another wavelength [38, 39]. Presuming that the in-
duced χ(2) value enables unity-efficiency conversion of
the |0, 0, 2〉 input state to a |2, 2, 0〉 output state, a K-
level cascade of these UPDC systems then enables unity-
efficiency preparation of the |2K , 2K〉 dual-Fock polar-
ization state from the |0, 0, 2〉 input state, as shown in
Sec. IV of [26]. This method requires efficient preparation
of the two-photon Fock-state pump, which is experimen-
tally challenging at present. Theoretical suggestions for
such Fock-state preparation include Refs. [19, 40]. Mi-
crowave generation experiments include Refs. [41, 42],
which could yield two-photon optical pumps by means
of microwave-to-optical quantum-state frequency con-
version (QSFC). See Refs. [43–47] for optical-to-optical
QSFC.

In conclusion, we have studied the quantum theory of
SPDC with single-mode signal, idler, and pump beams
and Fock-state pumps. We found that the efficiency of
converting pump photons into signal-idler photon pairs
is unity only for the single-photon pump. In order
to transcend this fundamental limit, we proposed us-
ing amplitude amplification, analogous to Grover search,
of the completely-converted state by interlacing SPDC
processes with NSGs. Our method can realize unity-
efficiency conversion, with nonlinear crystals of the ap-
propriate lengths, for all pump-photon numbers, but
the required crystal-length precision becomes increas-
ingly demanding with increasing pump-photon number.
Nevertheless, unity-efficiency conversion should be possi-
ble for pump-photon numbers up to 5, even if the same
crystal length is used for all Grover iterations.
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[28] A. Aćın, N. Brunner, N. Gisin, S. Massar, S. Pironio, and
V. Scarani, Phys. Rev. Lett. 98, 230501 (2007).
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