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We report on the creation of homogeneous Fermi gases of ultracold atoms in a uniform potential.
In the momentum distribution of a spin-polarized gas, we observe the emergence of the Fermi surface
and the saturated occupation of one particle per momentum state: the striking consequence of Pauli
blocking in momentum space for a degenerate gas. Cooling a spin-balanced Fermi gas at unitarity, we
create homogeneous superfluids and observe spatially uniform pair condensates. For thermodynamic
measurements, we introduce a hybrid potential that is harmonic in one dimension and uniform in the
other two. The spatially resolved compressibility reveals the superfluid transition in a spin-balanced
Fermi gas, saturation in a fully polarized Fermi gas, and strong attraction in the polaronic regime
of a partially polarized Fermi gas.
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Ninety years ago, Fermi derived the thermodynamics
of a gas of particles obeying the Pauli exclusion prin-
ciple [1]. The Fermi gas quickly became a ubiquitous
paradigm in many-body physics; yet even today, Fermi
gases in the presence of strong interactions pose severe
challenges to our understanding. Ultracold atomic Fermi
gases have emerged as a flexible platform for studying
such strongly correlated fermionic systems [2–6]. In con-
trast to traditional solid state systems, quantum gases
feature tunable spin polarization, dimensionality, and in-
teraction strength. This enables the separation of quan-
tum statistical effects from interaction-driven effects, and
invites the exploration of rich phase diagrams, for exam-
ple bulk Fermi gases in the BEC-BCS crossover [3–10]
and Fermi-Hubbard models in optical lattices [11–20].

So far, Fermi gas experiments have been performed
in inhomogeneous traps, where the non-uniform density
leads to spatially varying energy and length scales. This
poses a fundamental problem for studies of critical phe-
nomena for which the correlation length diverges. Fur-
thermore, in a gas with spatially varying density, a large
region of the phase diagram is traversed, potentially ob-
scuring exotic phases that are predicted to occur in a
narrow range of parameters. This is most severe for su-
persolid states, such as the elusive FFLO state [21–23],
where the emergent spatial period is well-defined only
in a homogeneous setting. A natural solution to these
problems is the use of uniform potentials, which have re-
cently proved to be advantageous for thermodynamic and
coherence measurements with Bose gases [24–27].

Here, we realize homogeneous Fermi gases in a versatile
uniform potential. For spin-polarized gases, we observe
both the formation of the Fermi surface and the satura-
tion at one fermion per momentum state, due to Pauli
blocking. Spatially uniform pair condensates are observed
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FIG. 1. (Color online) Homogeneous Fermi gas. (a) Schematic
of the box trap and cuts through the column-integrated den-
sity profiles along the axial and radial directions. (b) Radius
of the cloud as a function of the Fermi energy. The dotted
black and dashed red lines correspond to a perfect box poten-
tial and a harmonic potential respectively, and are scaled to
converge at the highest EF. The blue solid line corresponds to
a power law potential V (r)∼ r16. (c) Measured radial proba-
bility density P(n2D) for the column-integrated density n2D,
averaging about 20 in-trap images. The blue solid and red
dashed lines correspond to the uniform and gaussian traps,
respectively.

for spin-balanced gases, offering strong prospects for the
exploration of long-range coherence, critical fluctuations
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FIG. 2. (Color online) Momentum distribution of the homogeneous spin-polarized Fermi gas. (a) Doubly integrated momentum
distribution f1D for different temperatures in the uniform trap. In order of decreasing temperature: red dotted line, orange
dashed line, and blue solid line. Each line corresponds to averages over 7 images. The optical density after momentum space
mapping along z is shown in the inset. (b), (c), (d): Momentum distribution fk = −4πdf1D/dk

2, showing Pauli blocking and
Fermi surface formation. Fermi-Dirac fits (solid line) give: (b) T/TF = 0.49(2), (c) T/TF = 0.32(1), and (d) T/TF = 0.16(1),
with kF ranging between 2.8µm−1 and 3.7µm−1. The estimated systematic error in the measurement of fk is 15%.

and supersolidity.

In cases where the local density approximation (LDA)
is valid, the spatially varying local chemical potential
in an inhomogeneous trap can be utilized for thermo-
dynamic [28–31] and spectroscopic [7, 32, 33] measure-
ments. However, reconstructing the local density from
line-of-sight integrated density profiles typically increases
noise, while spatially selecting a central region of the gas
reduces signal. A potential that is uniform along the line-
of-sight is the natural solution. Combining the desirable
features of homogeneous and spatially varying potentials,
we introduce a hybrid potential that is uniform in two
dimensions and harmonic in the third. The line-of-sight
integration is now turned into an advantage: instead of
averaging over a wide region of the phase diagram, the
integration yields a higher signal-to-noise measurement
of the local density. Using this geometry, we observe the
characteristic saturation of isothermal compressibility in
a spin-polarized gas, while a strongly interacting spin-
balanced gas features a peak in the compressibility near
the superfluid transition [31].

In our experiment, we prepare atoms in the two low-
est hyperfine states of 6Li near a Feshbach resonance,
and load them into the uniform potential of the opti-
cal box trap depicted in Fig. 1(a), after evaporative pre-
cooling in a crossed dipole trap. We typically achieve
densities and Fermi energies of up to n≈ 1012 cm−3 and
EF≈h · 13 kHz, corresponding to ∼106 atoms per spin
state in the box. The lifetime of the Fermi gas in the box
trap is several tens of seconds. The uniform potential is
tailored using blue-detuned laser light for the confining
walls. The sharp radial trap barrier is provided by a ring
beam generated by an axicon [34, 35], while two light
sheets act as end caps for the axial trapping [36]. Fur-
thermore, the atoms are levitated against gravity by a
magnetic saddle potential [3]. The residual radial anti-
confining curvature of the magnetic potential is compen-
sated optically, while an axial curvature results in a weak

harmonic potential described by a trapping frequency of
ωz = 2π · 23.9 Hz. This typically results in a variation of
the potential along the axial direction that is less than
5% of the Fermi energy. Note that the magnetic mo-
ments of the two spin states of 6Li differ by less than
0.1% at unitarity, resulting in a negligible difference in
trapping potentials. We characterize the steepness of the
trap walls by measuring the radial extent R of the cloud
as a function of Fermi energy (see Fig. 1(b)). Model-
ing the trap walls with a power law potential, we obtain
V (r) ∼ r16.2±1.6 [36].

A stringent measure of the homogeneity of the gas is
the probability distribution P(n) for the atomic density
n. Imaging along the z and x directions yields the radial
and axial probability distribution P(n2D) for the column
density n2D (see Fig. 1(c) and [36]). The distribution for
the homogeneous gas is sharply peaked near the trap av-
erage density n2D. For comparison, we also show P(n2D)
for an optical gaussian trap, which is spread over a large
range of densities.

Fermions at low temperatures are characterized by
Pauli blocking [1]. Consequences of Pauli blocking have
been observed in ultracold gases, for example, in non-
degenerate samples, the reduction of collisions in spin-
polarized gases below the p-wave threshold [2, 37] and,
upon entering degeneracy, Pauli pressure [38, 39], re-
duced collisions [40, 41], anti-bunching in noise cor-
relations [42], and the reduction of density fluctua-
tions [43, 44]. In optical lattices under microscopes, Pauli
blocking has been observed in real space through observa-
tions of band insulating states [16, 17, 45] and of the Pauli
hole in pair correlations [20]. Typically obscured in the
time of flight expansion of an inhomogeneous atomic gas,
the Fermi surface has been observed by probing only the
central region of a harmonically trapped gas [46]. Now,
the uniform box potential enables us to directly observe
the consequence of Pauli blocking in momentum space
for degenerate gases: the Fermi-Dirac momentum distri-
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bution, featuring the emergence of a Fermi surface near
the Fermi wavevector kF and the saturated occupation of
momentum states below kF to one particle per momen-
tum cell.

To measure the momentum distribution f(k), we re-
lease a highly spin-imbalanced gas (n↓/n↑ < 0.05, where
n↑ and n↓ are the densities of the majority and mi-
nority spin-components, respectively) from the uniform
potential into the small residual axial harmonic po-
tential (along the z-axis). To ensure the ballistic ex-
pansion of the gas, the minority component is opti-
cally pumped into a weakly interacting state within 5µs
[36]. After a quarter period of expansion in the har-
monic trap, the axial momenta kz are mapped into real
space via z = ~kz/mωz [47–50]. In contrast to conven-
tional time of flight measurements, this method is unaf-
fected by the in-trap size of the gas. The measured in-
tegrated density profile n1D(z) =

∫∫
dxdy n(x, y, z) re-

flects the integrated momentum distribution f1D(kz) =
(2π)−2

∫∫
dkx dky f(kx, ky, kz) via

f1D(kz) =
2π~
V mωz

n1D(z). (1)

Here, V is the volume of the uniform trap. Figure 2(a)
shows the integrated momentum distribution for dif-
ferent temperatures. Assuming a spherically symmet-
ric momentum distribution, fk ≡ f(k) = f(k). Not-

ing that
∫

dkxdkyf
(√

k2x + k2y + k2z

)
= π

∫∞
k2z

d(k2)f(k),

the three-dimensional momentum distribution can be ob-
tained from the integrated momentum distribution by
differentiation:

fk = −4π
df1D(kz)

dk2z
. (2)

As the temperature is lowered, the momentum distribu-
tion develops a Fermi surface, and we observe a momen-
tum state occupation of 1.04(15) at low momenta (see
Fig. 2(b)-(d)), where the error in fk is dominated by the
systematic uncertainties in the box volume and the imag-
ing magnification [36]. This is the direct consequence of
Pauli blocking and confirms saturation at one fermion
per momentum state.

An important motivation for the realization of a ho-
mogeneous Fermi gas is the prospect of observing ex-
otic strongly correlated states predicted to exist in nar-
row parts of the phase diagram, such as the FFLO
state [21, 22]. In a harmonic trap, such states would be
confined to thin iso-potential shells of the cloud, making
them challenging to observe. We observe pair conden-
sation in a uniformly trapped strongly interacting spin-
balanced Fermi gas through a rapid ramp of the magnetic
field during time of flight [3, 51, 52], as shown in Fig. 3(a)-
(c). The pair condensate at the end of the ramp barely
expands in time of flight. As a result, the in-trap homo-
geneity is reflected in a flat top profile of the condensate
(see Fig. 3(f)).
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FIG. 3. (Color online) Pair condensation in the uniform trap.
(a), (b) and (c): absorption images after a rapid ramp of the
magnetic field and 10 ms of time of flight. The temperature
of the gas is lowered (left to right) by evaporation in the
uniform trap. The onset of a bimodal distribution signals the
formation of a pair condensate. (d), (e) and (f) show cuts
through the images in the top row.

Although a fully uniform potential is ideal for measure-
ments that require translational symmetry, a spatially-
varying potential can access a large region of the phase
diagram in a single experimental run. To harness the ad-
vantages of both potentials, we introduce a hybrid ge-
ometry that combines the radially uniform cylinder trap
with an axially harmonic magnetic trap along the z-
direction (see Fig. 4(a)). As a benchmark for the hy-
brid trap, we perform a thermodynamic study of both
a strongly spin-imbalanced and a spin-balanced unitary
gas. Figure 4(c)-(e) display for both cases the y-axis av-
eraged local density, temperature, and compressibility.
The data shown in Fig. 4 is extracted from an average
of just six images per spin-component. For comparison,
precision measurements of the equation of state at unitar-
ity, performed in conventional harmonic traps, required
averaging of over 100 absorption images [31]. The tem-
perature is obtained from fits to the known equations
of state of the non-interacting and spin-balanced unitary
Fermi gas respectively. From the local density in the hy-
brid trap, we determine the normalized isothermal com-
pressibility κ̃ = κ

κ0
= − ∂EF

∂U

∣∣
T

for the spin-imbalanced
and the spin-balanced gas. Here, U is the external po-
tential, and κ0 = 3

2
1

nEF
is the compressibility of the non-

interacting Fermi gas at zero temperature [31].

The strongly spin-imbalanced cloud features two dis-
tinct regions in the trap. The center of the cloud is a
partially polarized region in which (n↑−n↓)/(n↑+n↓) >
0.64, well above the Clogston-Chandrasekhar limit of su-
perfluidity [53–55]. Surrounding the center is a fully po-
larized region, where the compressibility is seen to satu-
rate: the real space consequence of the Pauli blocking in
momentum space demonstrated in Fig. 2.
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FIG. 4. (Color online) Unitary Fermi gases in the hybrid trap.
(a) Schematic and potential of the trap. The cloud is im-
aged along an equipotential direction (x-axis). Left panels
of (b)-(e) show a spin-imbalanced gas above the Clogston-
Chandrasekhar limit, whereas the right side corresponds to
a spin-balanced gas. The data is averaged over 6 images. (b)
local density for both spin components, obtained by dividing
the column density by the column length. (c) Average density
for each x−y equipotential slice. The blue (red) line shows the
spin-up (-down) component. (d) Spatially resolved tempera-
ture of the gas. The blue shaded region represents the error
in the temperature determination. (e) Compressibility of the
gas. The solid line in the left panel is the compressibility for
an ideal Fermi gas. The crossover from fully polarized (FP)
region to partially polarized (PP) region is accompanied by an
increase in κ̃. The yellow squares in the right panel correspond
to a precision measurement of the balanced unitary equation
of state in harmonic trap [31]. The peaks in the compressibil-
ity signal the phase transition from normal (N) to superfluid
(SF). The horizontal dashed line shows the zero-temperature
equation of state κ/κ0 = 1/ξ.

The majority spin component in the partially polarized
region is affected by the presence of the minority spin
component. We measure the compressibility κ̃↑ = −∂EF↑

∂U
in the partially polarized region, and observe an increase
compared to the fully polarized gas. This is expected as
the minority atoms in the center of the trap attract ma-
jority atoms and form polarons [7, 8]. The effect is indeed
predicted by the polaron equation of state [29, 30, 56].
The observation of this subtle effect highlights the sen-
sitivity of the hybrid potential for thermodynamic mea-
surements.

In the spin-balanced case, κ/κ0 is significantly larger
than for the ideal Fermi gas due to strong interactions.
The two prominent peaks in the reduced compressibil-
ity signal the superfluid transition at the two boundary
surfaces between the superfluid core and the surround-
ing normal fluid. Near the center of the trap, the reduced
compressibility agrees with the T = 0 equation of state
κ/κ0 = 1/ξ = 2.65(4), where ξ is the Bertsch param-
eter. The shaded region in the right column of Fig. 4
shows the superfluid part of the gas, where the temper-
ature is below the critical temperature for superfluidity
Tc = 0.17TF [31].

The realization of uniform Fermi gases promises fur-
ther insight into phases and states of matter that have
eluded observation or quantitive understanding. This in-
cludes the observation of the quasiparticle jump [57] in
the momentum distribution of a Fermi liquid, critical
fluctuations in the BEC-BCS crossover, and long lived
solitons [58]. Of particular interest are spin imbalanced
mixtures that have been studied extensively in harmonic
traps [29, 30, 55, 59–62], where the trap drives the sepa-
ration of normal and superfluid phases into a shell struc-
ture. This phase separation should occur spontaneously
in a uniform spin-imbalanced gas, possibly forming do-
mains of superfluid and eventually ordering into an FFLO
state. In addition, the hybrid potential is a valuable tool
for precision measurements that rely on an in-trap den-
sity variation. For example, spatially resolved RF spec-
troscopy [32] in the hybrid potential would measure the
homogenous response of the system over a large range of
normalized temperatures T/TF in a single experimental
run.
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