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We give an intuitive geometric explanation for the apparent breakdown of standard finite-size
scaling in systems with periodic boundaries above the upper critical dimension. The Ising model
and self-avoiding walk are simulated on five-dimensional hypercubic lattices with free and periodic
boundary conditions, by using geometric representations and recently introduced Markov-chain
Monte Carlo algorithms. We show that previously observed anomalous behaviour for correlation
functions, measured on the standard Euclidean scale, can be removed by defining correlation func-
tions on a scale which correctly accounts for windings.

Finite-size Scaling (FSS) is a fundamental physical the-
ory within statistical mechanics, describing the asymp-
totic approach to the thermodynamic limit of finite sys-
tems in the neighbourhood of a critical phase transi-
tion [1, 2].

It is well-known [3] that models of critical phenom-
ena typically possess an upper critical dimension, dc,
such that in dimensions d ≥ dc, their thermodynamic be-
haviour is governed by critical exponents taking simple
mean-field values [4]. In contrast to the simplicity of the
thermodynamic behaviour, however, the theory of FSS in
dimensions above dc is surprisingly subtle, and remains
the subject of ongoing debate [5–12]. We will show here
that such subtleties can be explained in a simple way, by
taking an appropriate geometric perspective.

Perhaps the most important class of models in equilib-
rium statistical mechanics are the n-vector models [13],
describing systems of pairwise-interacting unit-vector
spins in R

n [14]. The cases n = 1,2,3 respectively corre-
spond to the Ising, XY and Heisenberg models of ferro-
magnetism, while the limiting case n = 0 corresponds to
the Self-avoiding Walk (SAW) model of polymers [3].

The n-vector model has wide-ranging applications in
condensed matter physics, particularly in the theory
of superfluidity/superconductivity and quantum mag-
netism. In addition, the case n = 2 is related to the
Bose-Hubbard model [15] which is actively studied in
the field of ultra-cold atom physics. In such quantum
applications, the quantum system in d spatial dimen-
sions is related to the classical model in d+1 dimensions.
Since [3] dc = 4 for the nearest-neighbour n-vector model,
this shows that understanding its FSS when d ≥ dc is of
importance not only to the theory of FSS itself, but also
in the field of condensed matter physics more generally.
We also note that the value of dc can be reduced by the
introduction of long-range interactions.

In this Letter, we apply a geometric approach to re-
examine a long-standing debate concerning the FSS of
the n-vector model with d > dc [5–12]. The majority of
this debate has focused on the boundary-dependent FSS

of the ferromagnetic Ising model when d > dc; particu-
larly on the case d = 5. Numerical observations [16] for
the magnetic susceptibility χ have established an anoma-
lous FSS behaviour χ ∼ Ld/2 at the critical point, when
using periodic boundary conditions (PBC). By contrast,
standard mean field behaviour χ ∼ L2 is observed [8, 9] for
free boundary conditions (FBC). Moreover, with periodic
boundaries, it was numerically observed [10] that the cor-
relation between spins at distance L/2 scales like L−d/2,
in contrast to the standard mean-field prediction L−(d−2)

expected for free boundaries. Recent renormalization-
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Figure 1: Average winding number, W , for Ising and SAW
models with periodic boundary conditions. The number of
windings is asymptotically constant in L for d < dc. Above
dc, windings proliferate with increasing L. To emphasize the
universal scaling, the data for Ising and SAW were translated
onto a single curve for both d = 2 and d = 5. The predicted

scaling W ∼ L ϙ−1 with ϙ = d/dc is evident for d > dc.

group arguments attempt to explain this anomalous FSS
by postulating a modified scaling of the correlation length
ξ ∼ L ϙ when d > dc, where ϙ ∶= d/dc [17]. Moreover, an
additional exponent ηQ, related to ϙ, was introduced to
explain the anomalous large-distance behaviour of the
spin-spin correlation function.
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Our central message is that in order to elucidate
the mechanisms underlying boundary-dependent FSS, it
proves useful to consider appropriate geometric represen-
tations of the investigated systems. In particular, rather
than working directly with Ising spins, we study the Ising
model via its high-temperature representation [18]. In
addition, we also study the analogous FSS properties for
the self-avoiding walk.
We argue that the apparent breakdown of standard

FSS for periodic systems is a manifestation of the prolif-
eration of windings (see below for a precise definition),
absent for dimensions below dc; see Fig. 1. This moti-
vates introducing an alternative definition of length on
the torus, different from the standard Euclidean length,
which accounts for the number of such windings. We re-
fer to this length scale, which is of order WL ∼ L ϙ, as
the unwrapped length. Our numerical results show that
when correlations are measured on the scale of the un-
wrapped length, the apparently anomalous behaviour on
the torus disappears, and standard mean-field behaviour
is recovered.
Furthermore, we provide strong numerical evidence

that even when measured on the Euclidean scale, the
observed anomalous behaviour of critical correlations on
the torus can be explained without introducing a new
critical exponent ηQ. In particular, Fig. 4a and 4b con-
firm the following piecewise asymptotic behaviour

⟨s0sx⟩PBC ∼
⎧⎪⎪⎨⎪⎪⎩

∥x∥−(d−2), ∥x∥ ≤ O (Ld/[2(d−2)]) ,
L−d/2, ∥x∥ ≥ O (Ld/[2(d−2)]) ,

(1)

as conjectured in [19]. These figures also show that the
analogous quantity for SAWs obeys the same scaling.

Geometric representations and observables.— The
zero-field Ising model is defined by the Hamiltonian
H = −∑ij sisj , where si ∈ {−1,+1} is the spin on site
i of a hypercubic lattice of side length L, and the sum is
over nearest neighbours. Its so-called high-temperature
expansion [18] provides a natural geometric representa-
tion for the spin-spin correlation function

gIsing(x) ∶= ⟨s0 sx⟩ =
∑A∶∂A={0,x} z

∣A∣

∑A∶∂A=∅ z
∣A∣

, (2)

where the sums are over all bond configurations A sub-
ject to the given constraint on ∂A, where ∂A denotes
the set of vertices incident to an odd number of occupied
bonds. The bond fugacity satisfies z = tanh(1/T ), where
T is the Ising temperature. We simulated this geomet-
ric representation using the worm algorithm of Prokof’ev
and Svistunov [20].
We also considered the SAW model in the grand-

canonical (variable-length) ensemble. The SAW corre-
lation function is given by

gSAW(x) ∶= ∑
ω ∶ 0→x

z ∣ω∣, (3)

where the sum is over all SAWs beginning at the origin
and ending at site x. In contrast to typical studies of
SAWs, which are performed on the infinite lattice, we
consider this model to be confined to finite subsets of the
hypercubic lattice, as studied for the Ising model. We
simulated this ensemble using an irreversible version of
the Beretti-Sokal (B-S) algorithm [21] introduced in [22].
For convenience, we measured the Ising and SAW cor-

relation functions only along the first coordinate axis, i.e.
only at x = (x,0, . . . ,0) for 0 ≤ x ≤ L/2.
In addition, we measured the winding number W :

• For the SAW model, W is defined as the number of
windings along the first coordinate axis.

• In the Ising model, W is defined as the number
of windings along the first coordinate axis, in the
largest cluster. Measurements were taken when
∂A = ∅.

We emphasize thatW does not distinguish between wind-
ings in the positive or negative directions, and takes
strictly non-negative values. We denote the mean value
of W by W ∶= ⟨W⟩.
Furthermore, for the SAWmodel, we additionally mea-

sured:

• The walk length N , and its mean N .

• The unwrapped correlation function g̃SAW ∶ N → R

g̃SAW(u) ∶= ∑
ω∈S1 ∶U(ω)=u

zN (ω) (4)

where S1 is the set of all SAWs on Z
d
L which start

at the origin and end on the first coordinate axis,
and where the unwrapped length U is defined algo-
rithmically as follows. For ω ∈ S1, traverse ω from
the origin to its endpoint, adding +1 (−1) for each
step of the walk in the positive (negative) direction
along the first coordinate axis.

The unwrapped length U simply corresponds to the
length the walk would have in the infinite lattice, if the
torus were unwrapped, so that periodic images are con-
sidered distinct.
Our simulations for both models were performed on the

standard hypercubic lattice, using both FBC and PBC.
The Ising model was simulated at the exact infinite-
volume critical point in two dimensions [23], and at
the estimated location of the infinite-volume critical
point zc,Ising,5d = 0.113 915 0(5) [9] in five dimensions.
The SAW model was simulated at the estimated loca-
tion of the infinite-volume critical points, zc,SAW,2d =
0.379 052 277 758(4) [24], zc,SAW,5d = 0.113 140 84(1)[22]
and zc,SAW,6d = 0.091 927 86(4) [26], in dimensions, 2, 5
and 6, respectively. Our fitting methodology and cor-
responding error estimation follow standard procedures,
see e.g. [28, 29]. To estimate the exponent value for a
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generic observable Y we performed least-squares fits to
the ansatz Y = aY LbY + cY .

To estimate, gIsing, PBC/FBC we achieved linear sys-
tem sizes up to L = 101. Our SAW simulations were
performed in the range 21 ≤ L ≤ 201 for PBC and
51 ≤ L ≤ 401 for FBC, respectively. A detailed analysis of
autocorrelation times can be found in [27] for the worm
algorithm and in [22] for the irreversible B-S algorithm.

Boundary dependent FSS, and choosing the right

scale.— We now present a scaling argument which char-
acterizes the proliferation of windings in the SAW model
in terms of the exponent ϙ. Consider a uniformly
random SAW of fixed length N in Z

d, with d > dc.
The second virial coefficient B

N,N
2 provides a measure

of the excluded volume between a pair of such SAWs,
and is believed to scale like B

N,N
2 ∼ N2 (see e.g. [30]).

This suggests that in order to wrap such a walk onto
a torus Zd

L, without introducing intersections, would re-
quire N2

≲ Ld. Considering now a variable length en-
semble at zc, we expect the mean of N to be of the order
of its maximum, which implies E(N) ∼ Ld/2. Figure 2
verifies this prediction. Furthermore, if one were to take
a typical SAW on the torus Zd

L, and unwrap it into Z
d, it

would have root-mean-square displacement of order WL.
But for a uniformly-random fixed-length SAW in Z

d with
d > dc, the mean-square displacement scales like the walk
length. Combining this with the above observation shows
that WL ∼ Ld/4 = L ϙ.
Figure 1 confirms that this prediction holds for the

SAW model with d = 5,6, and also for the Ising model
with d = 5. By contrast, no proliferation of wind-
ings is observed for d = 2 in either model. Our fits
yield bW,SAW,5d = 0.27(4) and bW,Ising,5d = 0.24(3) and
bW,SAW, 6d = 0.54(7), in good agreement with the pre-
dicted value of ϙ − 1.
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Figure 2: FSS of the average walk length N of a critical SAW
in five dimensions. As predicted in the text, on the torus
we observe N ∼ Ld/2. By contrast, with free boundaries we
observe the standard mean-field behaviour N ∼ L2.

Unwrapped correlation function.— Consider simple
random walk (SRW) on a finite torus Z

d
L with d > 2.

If one defines gSRW(x) analogously to gSAW(x), it di-
verges at the SRW critical fugacity z = 1/2d. However, if
instead one considers the unwrapped version, defined by
summing over simple random walks in (4), rather than
SAWs, then one immediately recovers the usual infinite-
lattice simple-random walk Green’s function.
This simple observation suggests that the unwrapped

SAW correlation function g̃SAW(u) may also recover the
standard mean-field behaviour. Figure 3 clearly illus-
trates that this is indeed the case. From the figure,
we see that the unwrapped correlation function for sys-
tems with PBC displays identical scaling behaviour to
the Euclidean correlation function for systems with FBC.
Numerically fitting the exponent corresponding to the
power-law decay g̃SAW,PBC(u) ∼ u−b yields b = −3.02(2).
Similarly, fitting the decay exponent for gSAW,FBC(x)
yields b = −3.01(2). Both estimates are in excellent agree-
ment with the expected x−(d−2) scaling corresponding to
the infinite-lattice SRW Green’s function.
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Figure 3: Comparison of gSAW, FBC and g̃SAW, PBC. For
clarity, the data for gSAW,FBC(x) was translated upwards.

Correlations on the Euclidean scale.— Finally, we now
consider the correlation functions for the Ising and SAW
models with periodic boundary conditions, on the Eu-
clidean scale. As predicted by (1), Fig. 4a shows that two
qualitatively different regions of x can be identified. At
short distances, both correlation functions exhibit stan-
dard mean-field decay x−(d−2), while at long distances,
both enter a plateau. In the inset, we fix a point in
the plateau, x = ⌊L/4⌋, and analyze the L dependence
of the correlations at this point. Our fits yield exponent
values of −2.55(12) and −2.52(23) for SAW and Ising,
respectively, in good agreement with the prediction d/2
from (1). This L−d/2 scaling in the bulk is in agreement
with a previous study of the Ising model presented in [10].
To further test the conjectured scaling form (1),

Fig. 4b plots appropriately scaled versions of gSAW,PBC

and gIsing,PBC against the dimensionless variable y ∶=
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Figure 4: (a) Correlation functions for SAW and Ising models with PBC, on the Euclidean scale. The inset shows FSS at

the fixed point x = ⌊L/4⌋ leading to gIsing+SAW,PBC(⌊L/4⌋) ∼ L−d/2 for both models, in contrast to the standard mean field

prediction of L−3. (b) Collapse of both the Ising and SAW data with y ∶= x/Ld/[2(d−2)] onto the ansatz (1).

x/Ld/[2(d−2)]. The excellent data collapse provides strong
evidence for the validity of (1).

Discussion.— In this Letter, we have studied
boundary-dependent FSS above dc for both the SAW
model, and for a geometric representation of the Ising
model. We have established that the anomalous be-
haviour observed previously for the correlation functions
can be explained geometrically, without any need for new
critical exponents. This conclusion is in broad agreement
with independent arguments made previously in [8]. In
that work, an analysis of the Fourier modes of the Ising
model was presented, which also refuted the need for the
exponent ηQ.
Moreover, our results show that if one considers cor-

relations of the periodic system on the scale of the un-
wrapped length, rather than the Euclidean length, then
standard mean-field behaviour is recovered. Further-
more, the scale of the unwrapped length is shown to be
governed by the exponent ϙ.
Our consideration of unwrapped correlations above fo-

cused on the SAW case, largely for reasons of computa-
tional efficiency. However we expect analogous construc-
tions to apply to the Ising case. Unlike the SAW case,
there does not appear to be one unique sensible choice
for the definition of unwrapped length in the Ising case.
One sensible candidate would appear to be the longest
path along one fixed axis between the odd-degree ver-
tices. Unfortunately, finding the longest path in a graph
is a computationally demanding task, which makes test-
ing this conjecture challenging [31].

While we have focused on the case d > dc, we expect
that similar phenomena will be observed also at d = dc.
In this case, however, the logarithmic multiplicative cor-
rections to the mean-field thermodynamics will make the
analysis more subtle. Nonetheless, our preliminary simu-

lations of the XY model at d = dc suggest that the wind-
ings, which are directly related to the superfluid density
in this case, are again divergent. This suggests that the
correlation function may again exhibit the two-scale be-
haviour displayed in (1). Such phenomena will likely have
important consequences in studies of condensed matter in
three spatial dimensions, in particular to quantum criti-
cal dynamics [32].

Finally, we note that anomalous FSS behaviour on tori
has been established rigorously for percolation and the
Loop Erased Random Walk (LERW). For LERW, it has
been shown [33] that the mean path length scales as Ld/2,
in agreement with our observations for SAW. For perco-
lation it was conjectured that for d > 6 [34] the largest
cluster scales as L4 for bulk boundary conditions while it
scales as L2d/3 with periodic boundaries. This conjecture
was subsequently proved, for sufficiently large dimension,
for bulk boundaries in [35] and for periodic boundaries
in [36]. It would be of significant interest to study such
percolative questions in the general framework of the ran-
dom cluster model, and examine the Ising model from
this alternative geometric perspective.
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