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We present a method allowing for the imposition of two independent and arbitrary phase profiles
on any pair of orthogonal states of polarization — linear, circular, or elliptical — relying only
on simple, linearly birefringent waveplate elements arranged into metasurfaces. This stands in
contrast to previous designs which could only address orthogonal linear, and to a limited extent,
circular polarizations. Using this approach, we demonstrate chiral holograms characterized by fully
independent far-fields for each circular polarization and elliptical polarization beamsplitters, both
in the visible. This approach significantly expands the scope of metasurface polarization optics.
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Metasurfaces, subwavelength arrays of optical phase-
shifting elements, provide an exciting platform for ultra-
thin optics [1]. A distinguishing feature of metasur-
faces is the sophistication with which the individual
phase-shifting elements can be engineered. In particular,
metasurface elements can be designed to impart distinct
phases on orthogonal linear polarizations. Such elements
can then be described by the Jones matrix of a conven-
tional, linearly-birefringent waveplate [2]:

J = R(−θ)
[
eiφx 0

0 eiφy

]
R(θ) (1)

Here, the element imposes phase shifts φx and φy on
light linearly polarized along its fast and slow axes which
are rotated by an angle θ relative to the reference co-
ordinate system (R is a 2×2 rotation matrix). This
waveplate-like behavior could be realized with, for ex-
ample, plasmonic antennas [1], liquid crystals [3] (which,
due to their size cannot truly be considered metasurface
elements), or waveguide-like dielectric pillars exhibiting
mode-birefringence fabricated from Si [4–6], GaAs [7],
or TiO2 [8, 9] with, e.g., elliptical or rectangular cross-
section.

A metasurface composed of these linearly birefringent
elements can then act as a different optical element de-
pending on the polarization of incident light. From a
technological standpoint, this exciting capability allows
for a new class of polarization-switchable optical compo-
nents.

Previously, metasurfaces imparting polarization-
dependent phase have fallen into two categories: 1)
Propagation phase designs, which allow for the imposi-
tion of independent and arbitrary phase profiles on each
of two orthogonal, linear polarizations and, 2) Geometric
(or Pancharatnam-Berry) phase designs, which allow for
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metasurfaces imparting equal and opposite phase profiles
on the two circular polarizations. We describe each of
these strategies below.

Crucially, neither propagation nor geometric phase de-
signs alone are able to address elliptical polarizations,
representing the most general case. Intuitively, it is un-
clear whether this should even be possible with only sim-
ple, linearly birefringent waveplate elements which, af-
ter all, only distinguish between linear polarizations. In
this work, we show that the geometric and propagation
phases used in tandem allow for the imposition of arbi-
trary phase profiles on any two orthogonal polarization
states (linear, circular, or elliptical), significantly expand-
ing the scope of metasurface polarization optics and al-
lowing for new polarization-switchable metasurfaces.

We begin by considering the propagation phase alone.
At each point on a metasurface, the characteristic phase
shifts φx and φy imposed by an element can be individ-
ually tailored by adjusting its shape while its angular
orientation θ is held fixed. In this way, arbitrary and in-
dependent spatial phase profiles can be imposed on any
set of orthogonal, linear polarizations using the so-called
propagation (or dynamical) phase (Fig. 1a) [10]. Using
this approach, for instance, a single metasurface could
act as a lens for x-polarized light and encode a hologram
for y-polarized light [5].

The propagation phase is one of two means of impos-
ing polarization-dependent phase [11]. The other, the ge-
ometric phase, stems from polarization change. Specif-
ically, if two parts of a uniformly polarized wavefront
are transported to a common polarization state along
two different paths on the Poincaré Sphere (polarization
state-space), a relative phase emerges between the two
equal to half the solid angle enclosed by the path [12].
Less abstractly, this effect can be harnessed to attain
metasurfaces sensitive to circular polarizations. A meta-
surface composed of halfwave plate elements (|φx−φy| =
π) whose angular orientations θ(x, y) vary over its spatial
extent imposes a phase profile on one of the circular po-
larizations equal to φ(x, y) = 2θ(x, y) (Fig. 1b). These
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FIG. 1. Conceptual schematic — (a) At each point (x, y)
on a metasurface, the dimensions of a waveplate-like shape-
birefringent element (inset) can be varied to impose unique
phases φx and φy on light linearly polarized along each axis.
In this approach, which employs the propagation phase alone,
element dimensions are varied while the orientation angle θ is
held fixed. When each of two orthogonal, linear input polar-
izations (red, on left) are incident, arbitrary and independent
phase profiles φx(x, y) and φy(x, y) can be imparted upon
each; the output states (green, on right) are un-converted.
(b) Using the geometric phase alone, phase profiles of equal
and opposite magnitude can be imparted on the two circu-
lar polarizations. If elements with halfwave (π) retardance
are rotated at angles θ(x, y) at each point, one input circu-
lar polarization (red, on left) will pick up a phase of 2θ(x, y)
and the other −2θ(x, y) with each changing handedness upon
reflection or transmission (green, on right). Here, element di-
mensions are fixed and the orientation θ is varied. (c) By
varying both element dimensions and θ over the extent of the
metasurface–that is by combining the geometric and propaga-
tion phases—we show that arbitrary and independent phase
profiles φ±(x, y) can be imparted on any set of orthogonal in-

put states ~λ± (red, on left). Each must flip handedness upon
reflection or transmission (green, right).

retarders convert RCP (LCP) to LCP (RCP) along a
state-space path determined by the element’s orientation,
yielding a geometric phase that increases linearly from 0
to 2π as the element is rotated at angles from 0 to π . If,
however, the phase profile imposed in this way on RCP
light is some φRCP (x, y), the phase profile imparted on
a left circularly polarized (LCP) wavefront is automati-
cally φLCP (x, y) = −φRCP (x, y). This restriction — an
inherent symmetry of the geometric phase — still allows
for, e.g., circular polarization beamsplitters that deflect

opposite circular polarizations by equal and opposite an-
gles [4, 13, 14], but has important practical consequences:
a geometric phase converging lens for one circular polar-
ization, for example, will act as a diverging lens for the
other [15].

We now show that using a single layer of birefringent
metasurface elements, one can indeed impose arbitrary
and independent phase profiles on any set of orthogonal
polarizations by combining the propagation and geomet-
ric phases (Fig. 1c), the only restriction being that the
handedness of each polarization is flipped upon interac-
tion with the metasurface. In contrast to previous de-
signs using propagation or geometric phase alone, this al-
lows for metasurfaces imparting fully independent phase
profiles separately on each of any two orthogonal polar-
izations (including circular and elliptical).

Let the orthogonal polarization states upon which the
metasurface should impart independent phase profiles

be given by orthogonal Jones vectors ~λ+ =

[
λ+1
λ+2

]
and

~λ− =

[
λ−1
λ−2

]
. The output wavefront corresponding to

each input polarization state {~λ+, ~λ−} should have ho-
mogenous polarization, so we require that the metasur-
face consistently transforms the input polarization states

to output polarization states {~κ+, ~κ−} as ~λ+ → ~κ+ and
~λ− → ~κ− over its entire spatial extent. Suppose we are
interested in designing a metasurface imposing arbitrary

spatial phase profiles φ±(x, y) on the states ~λ±. That
is, at each point (x, y) we require a metasurface element
whose Jones matrix J(x, y) simultaneously satisfies

J(x, y)~λ+ = eiφ
+(x,y)~κ+ (2)

and

J(x, y)~λ− = eiφ
−(x,y)~κ− (3)

This treatment is justifed because each element is as-
sumed to be much smaller than the illuminating beam,
so that it experiences plane wave-like light. Mathemat-
ically, the above system (eqs. 2 and 3) is solvable for
any choice of {~κ+, ~κ−}. However, restricting ourselves to
a single layer of metasurface elements with linear struc-
tural birefringence, J is constrained to the form of Eqn.
1. It can be shown that this constraint directly implies
that the output polarization states {~κ+, ~κ−} must be the

same states as the input states {~λ+, ~λ−} with flipped

handedness — mathematically, ~κ± = (~λ±)∗ where ∗ de-
notes the complex conjugate. The reason for this follows
intuitively from the physics of waveplates (a simple geo-
metrical argument is detailed in the supplement) [16].

Given this knowledge of {~κ+, ~κ−}, the original system
can be recast as:
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J(x, y) =

[
eiφ

+(x,y)(λ+1 )∗ eiφ
−(x,y)(λ−1 )∗

eiφ
+(x,y)(λ+2 )∗ eiφ

−(x,y)(λ−2 )∗

] [
λ+1 λ−1
λ+2 λ−2

]−1
(4)

Requiring ~κ± = (~λ±)∗ here guarantees that the Jones
matrix J(x, y) at each point (x, y) represents a linearly
birefringent waveplate (in the sense of Eqn. 1). By
specifying the desired phase shifts φ± and target states
~λ±, J is determined by Eqn. 4. Being linearly bire-
fringent, the J so obtained has eigen-polarizations which
are orthogonal and linear on which it imparts charac-
teristic phase shifts {φx, φy}. The geometry of an ele-
ment imposing these required phase shifts on the linear
eigen-polarizations can be located with, e.g., finite dif-
ference time domain (FDTD) simulation; the orientation
of the linear eigen-polarizations determine the element’s
fast and slow axes and thus the orientation angle θ.

In summary, a physical meta-element imparting phases

φ± on arbitrary orthogonal polarization states ~λ± has a
Jones matrix J defined by Eqn. 4; the orientation and
dimensions of an element implementing this J are then
determined by the angle of J ’s orthogonal linear eigen-
polarizations and the characteristic phase shifts {φx, φy}
imposed upon them. It should be noted that this possi-
bility was recognized in the supplementary information
to [5] where it was, however, described only briefly and
from a purely theoretical standpoint.

The above result can be understood as a unification
of the propagation and geometric phases in a single el-
ement. Desired phases can be imparted on any set of
orthogonal polarization states by modifying an element’s
shape-birefringence and angular orientation simultane-
ously (Fig. 1c).

To demonstrate this arbitrary phase control for po-
larizations other than linear polarizations, we designed,
fabricated and tested a metasurface encoding separate
holograms for RCP/LCP. The near-field phase profiles
yielding far-field intensity images of a cartoon cat and
dog were computed using iterative phase retrieval [17]
and a metasurface consisting of non-interacting, ellipti-
cal TiO2 pillars was designed to impose these phase pro-
files independently on each circular polarization in trans-
mission. Here a broad range of pillars (with semi-major
and minor axes ranging from 50-300 nm, all assuming a
height of 600 nm set by our fabrication process) was sim-
ulated using full-wave FDTD simulations to find those
that would satisfy the phase-shifting properties solved
for in Eqn. 4 [16]. Fabricated with a recently reported
TiO2 process on glass [8], the pillars were arranged in a
square lattice with 500 nm nearest-neighbor separation
(Fig. 2b-c). The metasurface was designed for and tested
in the visible at λ = 532 nm. The measured far-field
intensity profiles upon illumination with each circular
polarization matched the design images with significant
detail (Fig. 2a). Slight differences between the design
images and measured holograms shown in Fig. 2a are
attributable to fabrication imperfections and an assump-
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FIG. 2. Chiral Holograms — (a) A single metasurface en-
codes two independent hologram phase profiles for each cir-
cular polarization at λ = 532 nm. When illuminated with
RCP (LCP), the metasurface projects an image of a cartoon
dog (cat) to the far-field. Design images are shown in the
schematic (top) and measured projections on a screen are
shown below. The dog (cat) occupies 17◦ (15◦) of arc. The
bright dot in the center of each represents zero-order light
not coupling into the metasurface due to fabrication imper-
fections and beam overfilling. (b) The metasurface encod-
ing these holograms was 350×300 µm in size and contained
420,000 TiO2 pillars of elliptical cross-section. Shown is an
SEM of the device. (c) Oblique view.

tion by the phase reconstruction algorithm of uniform
amplitude transmission at each point (x, y). It should be
noted that while metasurface chiral holograms for circu-
lar polarizations have been reported [18, 19], the phase
profiles imparted on each circular polarization, and thus
the projected far-fields, are not fully independent due to
a reliance on geometric phase alone. In these cases, only
sections of the far-field (such as individual diffraction or-
ders) can contain independent images for each chirality.
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Using the method presented here, the phase profiles im-
parted on each circular polarization—and, consequently,
the resulting far-fields—can be completely decoupled.

Metasurfaces acting as polarization beamsplitters (i.e.,
blazed gratings deflecting light in a direction depen-
dent on its polarization) have been demonstrated exten-
sively for orthogonal linear polarizations using propaga-
tion phase (where the deflection angles can be arbitrary)
[5, 20, 21] and for circular polarizations using the geomet-
ric phase (where the deflection angles are constrained to
be equal and opposite) [3, 4, 13, 14, 20], though never for
elliptical polarizations. This has consequences especially
for polarimetry, where a thorough sampling of polariza-
tion state space, including elliptical states, is necessary
to optimize sensitivity [22–24]. We demonstrate here el-
liptical polarization beamsplitters, a novel class of optical
components.

A metasurface deflecting light at an angle β must im-
pose a linear phase profile given by 2πx

λ sinβ with x the
spatial coordinate along the splitting direction [1]. A
metasurface polarization beamsplitter, then, must im-
pose two such phase profiles with different β on each
of two polarizations. Using the geometric and propaga-
tion phases in tandem as described above, this is possi-
ble for any set of two orthogonal, elliptical polarizations.
To showcase this capability, we designed six such beam-
splitting metasurfaces for six different sets of elliptical
polarizations, each of which was designed to deflect or-
thogonal polarizations at ±7◦ (though we stress that the
angles are not constrained to be equal/opposite with this
method). The elliptical polarizations chosen—the “split
states”—were the six sets of orthogonal Stokes vectors
matching the vertices of a regular icosahedron inscribed
in the Poincaré Sphere (Fig. 3). The choice of an icosa-
hedron in particular, and the platonic solids in general,
corresponds to optimal sampling of states for polarimetry
[24].

The geometry of each beamsplitter unit cell, along
with the polarization ellipses of the split states, are
shown in Fig. 3a. These were realized with 600 nm
high rectangular TiO2 pillars whose lateral dimensions
ranged from 50-250 nm, on a hexagonal grid with 420 nm
nearest-neighbor separation. The unit cells shown (#1-6)
were tessellated to form six different metasurfaces, each
300×300 microns in size. The testing of each metasurface
beamsplitter involved illumination with a set of six test
polarization states. By measuring the m = ±1 diffraction
order intensity in response to each, the polarization states
to which the device is most selective (i.e., the states of po-
larization for which the extinction ratio between orders
is maximized) were obtained [25]; ideally, these would
match the designed split states. In Fig. 3b, these states
of maximal selectivity are plotted on the Poincaré Sphere
alongside the designed split states, showing good agree-
ment. The same data is presented in graphical form in
Fig. 3c. Discrepancy between the design and measured
states can be attributed to imperfections in the fabri-
cated sizes of the elements. A more detailed description
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FIG. 3. Elliptical polarization beamsplitters — (a) A
metasurface imposing a linear spatial phase gradient will de-
flect normally incident light at an angle. A metasurface im-
posing phase gradients with different slopes on different po-
larizations will function as a polarization beamsplitter. Us-
ing the formalism presented, six metasurface beamsplitters
(each 300×300 µm in size) whose unit cells are shown were
designed to split six sets of orthogonal, elliptical polariza-
tions (the split states). The polarization ellipses of these split
states are shown on either side of each corresponding unit
cell. Note that #1 is a conventional geometric phase grat-
ing for circular polarizations, but that designs #2-6 represent
new functionality. (b) The six sets of orthogonal split states
shown in (a) have Stokes states of polarization (SOP) de-
fined by the vertices of a regular icosahedron inscribed in the
Poincaré Sphere. The northern (top right) and southern (top
left) hemispheres of sphere are shown. Each metasurface (#1-
6) was illuminated with a set of test polarization states and
the intensities on the ±1 diffraction orders in response to each
were measured and used to compute the actual split SOPs.
These are shown as black dots on the Poincaré Sphere (center)
and color-coded, numbered dots on each hemisphere, show-
ing good agreement with the design SOPs (vertices). (c) The
same data, presented as bar charts of the Stokes coordinates
(s1, s2, s3).

of this beamsplitter characterization is deferred to the
supplement [16].

In summary, we demonstrate here how a broad class
of metasurfaces can impose arbitrary and independent
phase profiles on any set of orthogonal polarization
states, notably extending this capability to chiral po-
larizations without relying on chiral birefringence. We
show in particular how this ability can be used to tar-
get elliptical polarization states, and provide an intu-
ition for this phenomenon as arising from the combina-
tion of propagation and geometric phase. This formal-
ism generalizes the design space offered by polarization-
sensitive, linearly-birefringent metasurfaces, enabling po-
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larization switchable lenses for chiral polarizations, more
versatile q-plates, and improved metasurface polarime-
ters (to name a few examples), illustrating further that
metasurfaces represent a uniquely powerful platform for
polarization optics.

ACKNOWLEDGMENTS

The authors wish to acknowledge Lulu Liu (Harvard
University) who was of great help in capturing high-
quality images of the cat/dog holograms and Tobias
Mansuripur (Harvard University) for helpful comments.

This work was supported in part by the Air Force Of-
fice of Scientific Research (MURI, grant #FA9550-14-1-
0389 and FA9550-16-1-0156). Additionally, NAR is sup-
ported by the NSF Graduate Research Fellowship Pro-
gram (GRFP) under grant #DGE1144152. RCD ac-
knowledges support from a fellowship through Charles
Stark Draper Laboratory. This work was performed in
part at the Center for Nanoscale Systems (CNS), a mem-
ber of the National Nanotechnology Coordinated Infras-
tructure (NNCI), which is supported by the National Sci-
ence Foundation under NSF award no. 1541959. CNS is
part of Harvard University.

[1] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne,
F. Capasso, and Z. Gaburro, Science 334, 333 (2011).

[2] B. E. Saleh and M. C. Teich, Fundamentals of Photonics,
2nd ed. (Wiley-Interscience, 2007).

[3] C. Oh and M. J. Escuti, Opt. Lett. 33, 2287 (2008).
[4] D. Lin, P. Fan, E. Hasman, and M. L. Brongersma,

Science 345, 298 (2014).
[5] A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, Nat.

Nanotechnol. 10, 937 (2015).
[6] Y. Yang, W. Wang, P. Moitra, Kravchenko II, D. P.

Briggs, and J. Valentine, Nano Lett 14, 1394 (2014).
[7] Z. Bomzon, V. Kleiner, and E. Hasman, Opt. Lett. 26,

1424 (2001).
[8] R. C. Devlin, M. Khorasaninejad, W.-T. Chen, J. Oh,

and F. Capasso, Proc. Natl. Acad. Sci. 113, 10473 (2016).
[9] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh,

A. Y. Zhu, and F. Capasso, Science 352, 1190 (2016).
[10] M. Berry, Proc. R. Soc. 392, 45 (1984).
[11] M. J. Escuti, J. Kim, and M. W. Kudenov, Opt. Pho-

tonics News 27, 22 (2016).
[12] S. Pancharatnam, Proc. Indian Acad. Sci. - Sect. A 44,

247 (1956).
[13] E. Hasman, Z. Bomzon, A. Niv, G. Biener, and

V. Kleiner, Opt. Commun. 209, 45 (2002).
[14] M. Khorasaninejad and K. B. Crozier, Nat Commun 5,

5386 (2014).
[15] E. Hasman, V. Kleiner, G. Biener, and A. Niv, Appl.

Phys. Lett. 82, 328 (2003).
[16] See Supplemental Material [url], which includes Ref. [?

], for further theoretical and experimental detail.
[17] R. W. Gerchberg and W. O. Saxton, Optik (Stuttg). 35,

237 (1972).
[18] D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen,

M. Chen, K. F. Li, P. W. Wong, K. W. Cheah, E. Y.
Pun, S. Zhang, and X. Chen, Nat Commun 6, 8241
(2015).

[19] M. Khorasaninejad, A. Ambrosio, P. Kanhaiya, and
F. Capasso, Sci. Adv. 2 (2016).

[20] A. Pors, O. Albrektsen, I. P. Radko, and S. I. Bozhevol-
nyi, Sci Rep 3, 2155 (2013).

[21] A. Pors and S. I. Bozhevolnyi, Opt Express 21, 27438
(2013).

[22] A. Pors, M. G. Nielsen, and S. I. Bolzhevolnyi, Optica
2, 716 (2015).

[23] J. S. Tyo, Appl. Opt. 41, 619 (2002).
[24] D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C.

Sweatt, S. A. Kemme, and P. G. S, Opt Lett 25, 802
(2000).

[25] J. P. B. Mueller, K. Leosson, and F. Capasso, Nano Lett.
14, 5524 (2014).


