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We consider light scattering off a two-dimensional (2D) dipolar array and show how it can be
tailored by properly choosing the lattice constant of the order of the incident wavelength. In par-
ticular, we demonstrate that such arrays can operate as a nearly perfect mirror for a wide range of
incident angles and frequencies, and shape the emission pattern from an individual quantum emitter
into a well-defined, collimated beam. These results can be understood in terms of the cooperative
resonances of the surface modes supported by the 2D array. Experimental realizations are discussed,
using ultracold arrays of trapped atoms and excitons in 2D semiconductor materials, as well as po-
tential applications ranging from atomically thin metasurfaces to single photon nonlinear optics and
nanomechanics.

Control over propagation and scattering of light fields
plays a central role in optical science. In particular, it
is well known that emitters exhibit a strongly modified
optical response on resonance. For example, enhanced
optical scattering in 2D arrays of linearly polarizable el-
ements have been extensively studied in photonics [1–5].
Recently, it has been shown that thin 2D metamateri-
als, known as metasurfaces, whose constituent elements
are optical antennas with varying resonances, can drasti-
cally alter the transmitted field by enabling spatial con-
trol of its amplitude, phase and polarization [6, 7]. As
a rule, these elements are micro-fabricated from macro-
scopic material, while the separation between the ar-
ray elements is typically much smaller than the oper-
ating wavelength. At the same time, resonant light can
be completely reflected by individual atoms when they
are strongly coupled to nanophotonic devices with sub-
wavelength localization of light [8–12]. Intuitively, this
originates from resonant enhancement of the optical cross
section of a polarizable dipole, which at resonance univer-
sally scales as λ2, λ being its resonant wavelength. Such
single atom reflectors yield extraordinary nonlinearities
at the level of individual photons [13–15].

Here we explore light scattering from a 2D ordered and
dilute array of atoms, with a lattice constant of the order
of a wavelength, as can be realized, e.g. using ultracold
atoms loaded into optical lattices [16, 17]. In such a case
near-resonant operation can still lead to strong scatter-
ing. Indeed, vanishing transmission at normal incidence
was recently discovered in a numerical study of 2D atomic
lattices for a specific frequency and lattice arrangement
[18]. Due to resonant enhancement, one may näıvely ex-
pect that a single layer of dipoles, even if they are as
small as individual atoms, may “tile” the plane and thus
act as a strong scatterer, provided the density of dipoles
exceeds 1/λ2 (Fig. 1a). This reasoning, though providing
intuition for the possibility of strong scattering in dilute
media, ignores the important effect of multiple scattering
of electromagnetic fields between the dipoles, associated
with dipole-dipole interactions [19–24]. These interac-
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FIG. 1: (a) 2D array of atoms spanning the xy plane at
z = 0, with inter-atomic spacing a on the order of the resonant
wavelength of the atoms, λ. For resonant light, the individual
atomic cross section is of order λ2 (dashed circles). (b) Light
scattering off the array in the single diffraction order regime:
The incident field (yellow arrow) produces a forward scattered
field at z > 0 and a reflected field at z < 0. (c) Intensity
transmission coefficient T and reflection coefficient R for a
square-lattice at normal incident and resonant light (δ = 0)
as a function of the lattice constant a. Strong scattering is
observed with perfect reflection occurring at a/λ ≈ 0.2, 0.8.

tions are crucial to explain the collective phenomena and
their tunability explored in this work.

In what follows, we develop an analytical approach to
the scattering problem, highlighting the role of the coop-
erative resonances of the dipolar array and their associ-
ated collective surface-wave excitations. Strong scatter-
ing generically occurs when the frequency of the incident
light matches that of the cooperative resonance. The
control of scattering off the array can be achieved by ad-
justing the lattice constant, which determines the cooper-
ative resonances via the underlying dipolar interactions.
We demonstrate that the array can form a nearly per-
fect mirror at almost all incident angles, as well as act as
an efficient coupler between an emitter and a collimated
optical mode. These results open a new direction in the
possibility to mold the flow of light, namely, by using
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atomically-thin metasurfaces.
Scattering at normal incidence.— We consider a 2D

array of identical point-like particles with a generic linear
and isotropic polarizability [25]

α(δ) = − 3

4π2
ε0λ

3
a

γ/2

δ + i(γ + γnr)/2
. (1)

Here δ = ω−ωa, with |δ| � ωa, is the detuning between
the frequency of the incident light ω = 2πc/λ and that of
the resonance of the particles ωa = 2πc/λa, and γ (γnr) is
the radiative (non-radiative) width of this resonance. For
a closed cycling transition in atoms we have γnr = 0 and
the isotropic and linear response corresponds to a J = 0
to J = 1 transition far from saturation. The array is
taken to be an infinite square lattice with lattice constant
a < λ, spanning the xy-plane at z = 0 (Fig. 1a). We note
that our analysis can be straightforwardly generalized to
other lattice geometries.

We first focus on the simplest case of a plane wave
at normal incidence. The condition a < λ guarantees
that only a single diffraction order is present in the far
field such that the scattered field on both sides of the ar-
ray consists of plane waves propagating in the z-direction
(Fig. 1b). Figure 1c shows the transmission and reflection
coefficients as a function of the lattice constant, com-
puted for resonant light δ = 0 and in the absence of
non-radiative losses, γnr = 0, using our analytical ap-
proach presented below. We observe that the array scat-
ters strongly over a wide range of lattice constants. In
particular, complete reflection (zero transmission) is ob-
served at lattice constants a/λ ≈ 0.2, 0.8. We note that
the null transmission at a/λ ≈ 0.8 was also recently found
numerically in Ref. [18].

Let us now analyze the above situation. For a < λ the
total field can be written as

E =
[
eikz + Seik|z|

]
E0, (2)

where E0 is the amplitude of the field polarized in the
xy-plane, k = ω/c, and S is a scattering amplitude. For
S = −1, the transmitted field (at z > 0) vanishes and the
corresponding perfect reflection gives rise to a standing
wave for z < 0. The scattering amplitude is determined
by the polarization p induced on the atoms by the inci-
dent field, which is identical for all atoms in this case. In
turn, p is the result of multiple scattering of the incident
field by all atoms in the array, and it can be character-
ized by an effective polarizability of the atoms defined by
p = αe(δ)E0. A self-consistent solution of this multiple-
scattering problem yields [26]

S(δ) = iπ

(
λ

a

)2
αe(δ)

ε0λ3
= − i(γ + Γ)/2

δ −∆ + i(γ + γnr + Γ)/2
.

(3)
By comparing the structure of this linear response to that
of an individual atom, Eq. (1), we infer that the dipolar
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FIG. 2: (a) The cooperative shift ∆, Eq. (4), as a function of
the lattice constant a (normal incidence). This plot is central
in the design of the scattering since the shift determines the
collective resonances of the array according to Eq. (3). Per-
fect reflection occurs when the cooperative shift equals the
incident detuning, δ = ∆. For example, ∆ = 0 at a/λ ≈ 0.2,
0.8 explains the resonances in Fig. 1c. (b) Intensity reflection
coefficient R as a function of lattice constant a and detuning
δ. We note that the emerging contour of perfect reflection
(bright yellow) coincides with the cooperative resonance plot-
ted in (a) (marked here by the dashed black curve).

interaction between atoms in the array renormalize both
the width γ and the resonant frequency ωa. They are
now supplemented by their cooperative counterparts Γ
and ∆, respectively, given by

∆− i
2

Γ = −3

2
γλ
∑
n 6=0

G(0, rn), Γ = γ
3

4π

(
λ

a

)2

−γ. (4)

Here, G(0, rn) is the transverse component (xx or yy)
of the dyadic Green’s function of electrodynamics in free
space [27], evaluated between the central atom (“n = 0”)
at r0 = 0 and the atom n at rn. The explicit expression
for Γ holds for a < λ and is in fact valid for any 2D
lattice [26].

Equation (3) reveals that scattering is strongest when
the frequency of the incident light matches the coopera-
tive resonance, δ = ∆. Perfect reflection (S = −1) occurs
if additionally γnr = 0. Therefore, the key ingredient that
determines the scattering properties of the array is the co-
operative dipole-dipole shift ∆, given by the summation
(readily evaluated numerically) of the dispersive dipole-
dipole shift over all atoms, the real part of Eq. (4). Figure
2a provides us with a central tool by which to understand
and design the scattering off the array, as it presents the
cooperative shift ∆ as a function of the lattice constant
a [26]. For example, the vanishing cooperative shift ∆
at a/λ ≈ 0.2, 0.8 explains the perfect reflection obtained
in Fig. 1c for δ = 0. Moreover, Fig. 2a shows that scat-
tering resonances exist for a wide range of incident field
detunings δ near the individual-atom resonance. This is
illustrated by Fig. 2b, in which the reflection coefficient
is plotted as a function of both a and δ.

For lossy particles, where γnr 6= 0, the scattering ampli-
tude (3) at resonance becomes S = −(Γ+γ)/(Γ+γ+γnr).
Therefore, high reflection requires that radiation damp-
ing via scattering is dominant over all other damping
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sources, γ + Γ� γnr. The scaling γ + Γ ∝ (λ/a)2, origi-
nating from cooperative enhancement, then implies that
this can be achieved for a sufficiently small lattice con-
stant even if the individual dipoles are poor radiators
(γ < γnr).

General angle of incidence.— The foregoing analysis
can be generalized to all incident angles. We begin by
considering a < λ/2, which ensures a single diffraction
order for all incident plane waves, E0,k‖e

ik‖·reikzz, at any
angle. Here k‖ = (kx, ky, 0) denotes the projection of the
incident wave vector k onto the xy plane and E0,k‖ can
be decomposed into the two possible transverse polar-
izations e+p,s⊥k. The total field has the form of Eq. (2),
where the scattering amplitude now becomes a 3×3 ma-
trix, and with eik‖·r‖E0,k‖ and kz replacing E0 and k, re-
spectively. The scattering amplitude is again determined
by the polarization of the atoms, which is spatially mod-
ulated by the in-plane incident wavevector, according to
Bloch’s theorem. The polarization of atom n can thus be
written as pn = p(k‖)e

ik‖·rn , where

p(k‖) = αe(k‖)E0,k‖ (5)

denotes the polarization in momentum space. Hence, the
effective polarizability is generally defined as the linear
response of the polarization of the array in momentum
space, given by the tensor

αe(k‖) = − 3

4π2
ε0λ

3 γ/2

δ −∆(k‖) + i[γ + γnr + Γ(k‖)]/2
.

(6)

In analogy with Eqs. (1) and (3), ∆(k‖) and Γ(k‖) are the
cooperative resonance and width tensors, respectively,

given in terms of the dyadic Green’s function G by

∆(k‖)−
i

2
Γ(k‖) = −3

2
γλ
∑
n 6=0

G(0, rn)eik‖·rn . (7)

An analytic expression can be obtained for Γ [26], while

∆ has been evaluated numerically.

The scattering amplitude is related to the effective po-
larizability by an expression similar to that in Eq. (3),
from which we can deduce the intensity reflection and
transmission coefficients. As illustrated in Fig. 3a for
s-polarized light, we find that the perfect reflection re-
vealed at cooperative resonance for normal incidence,
persists almost completely for all incident angles and
both s and p polarizations, well beyond the paraxial
regime [26]. This implies that the mirror should oper-
ate well for realistic finite size incident beams and ar-
rays, which was further verified for Gaussian beams by
a direct numerical approach [26]. The high reflection at
oblique angles may again be understood in terms of co-
operative resonances of the atom array. For example, in

Fig. 3b we plot the ss matrix element of ∆, which is

(b)(a)

FIG. 3: Scattering at a general angle of incidence for a lattice
constant a = 0.2λ. (a) Intensity reflection coefficient Rss

for s-polarized incident and scattered fields at zero detuning
from the bare atomic resonance (δ = 0) as a function of the
in plane components kx,y of the incident wavevector. (b) ss

component of the cooperative shift matrix ∆. The variation
of the energy shift around the resonance ∆ss = δ = 0 is small
compared to an atomic linewidth, which explains the high
reflection Rss at all angles.

seen to vary by less than an atomic linewidth over all in-
cident angles, thus explaining the excellent reflection of
s-polarized light.

When the lattice constant exceeds λ/2, an additional
diffraction order can appear. This situation can be an-
alyzed by a straightforward extension of the above for-
malism, entailing new possibilities such as retro-reflection
[26].

Surface dipole excitations.— More insight into the
physics of the array is gained by noting that the coop-

erative shift ∆(k‖) describes the dispersion relation of
collective surface dipole excitations. The nature of these
surface modes is revealed by Eq. (5) as the normal modes
of the atomic dipoles on the surface, p(k‖). The reso-
nant frequencies of the modes and their corresponding
polarizations can be deduced from their linear response
αe(k‖) in Eq. (6) as the three eigenvalues and eigenvec-

tors of ∆(k‖). This interpretation also follows from the
quantum master equation governing the dynamics of the

atoms, wherein the eigenvalues of ∆(k‖) arise naturally
as the energies of the Bloch modes of atomic excitations

[26]. By diagonalizing ∆ for each k‖ within the Brillouin
zone kx, ky ∈ [−π/a, π/a], we obtain the band structure
of the surface modes shown in Fig. 4a. The modes around
the center of the Brillouin zone (Γ), between the vertical
dotted lines, satisfy |k‖| < 2π/λ and couple to far-field
radiation. Therefore, these modes are responsible for the
scattering and high reflection discussed above. In con-
trast, modes with |k‖| > 2π/λ (beyond the vertical dot-

ted lines) cannot couple to far field, satisfying Γ + γ = 0,
and are confined to the surface.

Additional possibilities to control the propagation of
light are allowed via spatial variations in the 2D atomic
array, in analogy to its macroscopic metasurface coun-
terpart. One important example involves the design of
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FIG. 4: (a) Band structure of the collective surface modes
of the atom array for a = 0.2λ. The three bands in solid lines
correspond to the three eigenvalues of the cooperative shift

∆(k‖), whereas the single dashed band is that of array atoms

with a single circularly polarized transition, e0 = (1, i, 0)/
√

2.
The inset shows the location of the special points Γ, X, M in
the first Brillouin zone. The dotted vertical lines (main fig-
ure) and the circle (inset) indicate the light cone |k‖| = 2π/λ.
(b) An impurity atom (red) is placed at the center of the
array. The black and white colors of the array atoms rep-
resent the two sublattices which form the surface mode M .
(c) Decay rate to surface modes inside (dashed) and outside
(solid) the light cone, of the impurity atom with polarization
eI = (1,−i, 0)/

√
2 as a function its transition frequency ωI .

(d) Intensity of the electric field produced by an impurity (red
dot), driven at detuning (ω − ωa)/γ = 1.1 and resonant with
the surface modes near the corner of the Brillouin zone (M).
An alternating periodic potential, δω/γ = ±0.1, is applied
on an array of 30 × 30 atoms (white circles), with all other
parameters the same as in (b). The bright yellow region near
z = 0 corresponds to the excited surface modes, which are
then coupled into the collimated beam by the periodic poten-
tial. (e) Emitted power integrated over a cone of half angle θ
for the situation described in (d).

a highly directed emission pattern from a single impu-
rity atom coupled to the array. This can be achieved
by first analyzing the coupling of the impurity atom to
the surface modes, and then introducing a proper spatial
modulation to the array, which selectively couples the
impurity to a well-collimated, effectively 1D mode.

The decay of an excited impurity atom placed in prox-
imity of the array (Fig. 4b) is strongly modified at the
cooperative resonance, allowing e.g. for the excitation
of confined surface modes. Assuming, for simplicity, an
array of atoms with a single dipolar transition (polar-
izability) in the direction e0, the dispersion of the sur-
face modes can be described by a single band ∆(k‖) =

e†0∆(k‖)e0 (Fig. 4a, dashed curve). Within the Born-
Markov approximation, the spontaneous emission rate
from the impurity atom, with a dipole-transition of fre-
quency ωI , orientation eI and free-space radiative width
γI < γ, is given by ΓI(ωI) = 3γIλIm[eI · GA(rI , rI)]
[27]. Here GA(r, rI) is the electric field produced by

a dipole at position rI , frequency ωI and polarization
eI , which is found, in the presence of the array, using
the above formalism [28]. The emission can be decom-
posed into two contributions: emission into scattering
modes (k‖ < 2π/λ) and into modes confined to the sur-
face (k‖ > 2π/λ). Its dependence on the impurity’s fre-
quency, plotted in Fig. 4c, exhibits a discontinuity at
(ωI −ωa)/γ ≈ 1.1, for the given parameters, where emis-
sion to the confined modes largely dominates over those
scattered to the far field. This discontinuity arise from
the resonant excitation of an extremum of the disper-
sion, corresponding to the surface mode kM

‖ = (π/a, π, a)

on the corner of the Brillouin zone (point M) with
∆(kM

‖ )/γ ≈ 1.1. Then, by choosing the impurity transi-

tion such that (ωI − ωa)/γ = 1.1, the emitted photon is
almost entirely confined to propagate along the surface
as a polariton with momentum kM

‖ .

The mechanism by which this surface polariton can
be outcoupled to far-field radiation can be understood
as follows. The subradiant mode kM

‖ can be thought
of as being formed of two degenerate dipolar sublattices
of opposite phases, which destructively interfere at the
far field (Fig. 4b). Consider now a weak periodic po-
tential which detunes the atoms in the array by ±δω,
where the sign is opposite for any two nearest-neighbor
atoms. Such a perturbation splits the degeneracy be-
tween the two uniform sublattices, thus allowing them to
radiate into a collimated far-field beam. Alternatively,
this perturbation can be seen as a spatial modulation
of the array structure containing the momentum com-
ponents (±π/a,±π/a), which couple the corner of the
Brillouin zone (M) to the center, thus allowing for ex-
citations at kM

‖ to be emitted into a well-defined beam
normal to the array. Indeed, the numerical simulations
for a finite array in Fig. 4d,e confirm that the resulting
emission is strongly collimated, with > 90% of the power
emitted into a cone of half angle 25◦.

Discussion.— The current study demonstrates that
the scattering properties of light off a 2D atomic array
is determined by the dipolar interactions between the
atoms and in particular the cooperative resonances.

Possible experimental realizations of the 2D array in-
clude ultracold atoms trapped in either red or blue de-
tuned optical lattices [16, 29], arrays of plasmonic nano-
particles [2, 4], or 2D semiconductors such as monolayers
of transition metal dichalcogenides [30], where a lattice
structure for the excitons or trions can be created [31–34]
(see also [35]). Considering disorder in any of these real-
izations, we show in [26] that the cooperative resonances
are robust to fluctuations in the atomic positions when
the fluctuations are much smaller than the lattice period.

The above results suggest the potential use of such
2D arrays as powerful platforms for classical and quan-
tum optics. In particular, the demonstrated coupling of
an emitter to a collimated mode is analogous to efficient
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coupling to 1D photonic systems. Therefore, it should al-
low to obtain optical nonlinearities down to a single pho-
ton level for properly collimated incident beams [8, 13–
15, 37–40]. Furthermore, the generalization of our ap-
proach to other non-homogeneous arrays may allow to
create “atomic-scale metasurfaces” with desired prop-
erties. Our work also opens up new prospects in op-
tomechanics. Since the atoms are very light but at the
same time collectively exhibit nearly perfect reflection,
they form a highly mechanically-susceptible mirror, po-
tentially very useful for the exploration of optomechanics
at the quantum level [41].

Finally, we stress the universality of our approach,
based on summation of Green’s functions at lattice
points, relevant for cooperative resonances at any physi-
cal system of waves and dipole-like scatterers.
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with Vladimir Shalaev, Markus Greiner, Peter Zoller,
Darrick Chang, Hongkun Park, Alex High and Kristi-
aan de Greve, and financial support from NSF and the
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V. Vuletić and M. D. Lukin, Nature 508, 241 (2014).

[14] I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G.
Guendelman and B. Dayan, Science 345, 903 (2014).

[15] A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J.
Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco,
H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko,
E. Bielejec, H. Park, M. Lonc̆ar, M. D. Lukin, Science
354, 847 (2016).

[16] I. Bloch, Nat. Phys. 1, 23 (2005).

[17] H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T.
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