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We propose new searches for axion-like particles (ALPs) produced in flavor-changing neutral
current (FCNC) processes. This proposal exploits the often-overlooked coupling of ALPs to W±

bosons, leading to FCNC production of ALPs even in the absence of a direct coupling to fermions.
Our proposed searches for resonant ALP production in decays such as B → K(∗)a, a → γγ and
K → πa, a→ γγ could greatly improve upon the current sensitivity to ALP couplings to Standard
Model particles. We also determine analogous constraints and discovery prospects for invisibly
decaying ALPs.

Introduction: Axion-like particles (ALPs) are among
the best-motivated candidates for particle extensions of
the Standard Model (SM). ALPs arise as the Goldstone
bosons of any theory with a Peccei-Quinn symmetry
(PQ) [1–3], which is a spontaneously broken global sym-
metry that is anomalous with respect to the SM gauge
interactions. PQ symmetries, and hence ALPs, are ubiq-
uitous in theories beyond the SM such as string theory
[4–7] and supersymmetry [8–10]. ALPs were originally
motivated by dynamical solutions to the strong-CP prob-
lem [1–3], although recent proposals suggest that ALP
dynamics could also resolve the hierarchy problem [11].

Because ALPs are pseudo-Goldstone bosons, their
properties are more constrained than arbitrary scalar
fields. In particular, the shift invariance associated with
the anomalous symmetry protects ALP masses from ra-
diative corrections and so their masses can naturally take
on any value. Furthermore, their interactions with SM
fields arise through higher-dimensional (or otherwise sup-
pressed) operators, and these feeble couplings naturally
situate ALPs within models of hidden sectors, either as
the dark matter candidate itself [12–14] or as a media-
tor through the “axion portal” [15]. This has driven a
comprehensive laboratory search program ranging from
high-energy collider physics to condensed matter systems
(see for example Refs. [16–38]).

In the simplest models, ALPs couple to the SM gauge
boson field strengths according to the anomaly of the
corresponding PQ symmetry,

L ⊃ −gaV
4

a Vµν Ṽ
µν , (1)

where a is the ALP field, Ṽ µν = εµνρσVρσ/2 and Vµν
is the gauge boson field strength for a SM vector bo-
son V . In principle, a can interact with all three SM
gauge fields, with the relative couplings determined by
the gauge charges of the fermion fields giving rise to
the PQ symmetry anomaly. Phenomenological studies
of ALPs typically focus on their couplings to gluons
and photons, since these largely determine the rates of
ALP interactions at energies well below the electroweak
scale. For example, the dominant constraints on ALPs
for Ma ∼ MeV − GeV arise from beam-dump experi-

ments [16–19, 36] and high-energy colliders [20, 30, 32–35]
through the coupling of ALPs to photons. By contrast,
the couplings of ALPs to electroweak gauge bosons are
often neglected because their effects are suppressed for
energies E � MW , and the corresponding constraints
are presumed to be subdominant.

Contrary to this lore, we show in this Letter that cou-
plings of ALPs to W± bosons can give rise to observable
signatures and may, in fact, provide the best sensitivity
to ALPs for masses below 5 GeV. ALPs with aWW̃
couplings can be emitted in flavor-changing neutral
current (FCNC) processes such as those shown in Fig. 1.
In the scenario where the ALP couples predominantly
to electroweak gauge bosons, the subsequent decay of
the ALP into photons gives rise to signatures such as
B → K(∗)a, a → γγ. Since SM rates for such FCNC
processes are small [39], ALP production in FCNC
decays therefore provides a striking signature with
excellent prospects for discovery. Rare meson decays are
already powerful probes of low-mass scalars possessing a
direct coupling to quarks [40–49], but our results show
that ALPs can be discovered in these channels even if
no direct coupling to quarks is present at leading order.
Our proposed ALP signatures also predict the dominant
a → γγ decay instead of the fermionic decays which are
most important when a couples directly to SM fermions.

In the remainder of this Letter, we first present the
ALP effective field theory (EFT). We subsequently
derive the rates of ALP production in the most
promising channels, namely B → K(∗)a, a → γγ and
K → πa, a → γγ. Next, we examine the prospects
for direct ALP production at present and upcoming
B-factories. Finally, we study the complementary
scenario in which the ALP decays predominantly into
invisible states, determining the sensitivity of current
and upcoming facilities to this possibility.

ALP Production in FCNC Decays: For concrete-
ness, we consider a simplified model where the ALP cou-
ples only to the field strengths of the SU(2)W gauge
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FIG. 1. Axion-like particle production in flavor-changing
down-type quark decay, di → dj + a .

bosons,

L = (∂µa)2 − 1

2
M2
aa

2 − gaW
4

aW a
µνW̃

aµν , (2)

where the gaW coupling is the leading term in the EFT
expansion. This situation could arise if all fermions
charged under the PQ symmetry possess only SU(2)W
gauge interactions, although models where a addition-
ally couples to the hypercharge gauge bosons give qual-
itatively similar results (see Supplementary Material).
After electroweak symmetry breaking, the coupling gaW
generates interactions between a and W+W−, as well as
ZZ, Zγ, and γγ in ratios given by the weak mixing angle.

We have computed the contribution of Eq. (2) to the
amplitude for di → dja depicted in Fig. 1. The result is
replicated by the following effective interaction (assuming
negligible up-quark mass):

Ldi→dj ⊃ −gadidj (∂µa) d̄jγ
µPLdi + h.c., (3)

gadidj ≡ −
3
√

2GFM
2
W gaW

16π2

∑
α∈c,t

VαiV
∗
αjf(M2

α/M
2
W ),

f(x) ≡ x [1 + x(log x− 1)]

(1− x)2
,

where GF is the Fermi constant and Vij are the rele-
vant entries of the Cabibbo-Kobayashi-Maskawa (CKM)
matrix. Note that f(x) ≈ x for x � 1 such that the
interaction is proportional to M2

α/M
2
W for Mα � MW .

There is an additional contribution to the effective cou-
pling suppressed by factors of the external quark masses
(∼M2

di
/M2

W ) that we have neglected to write in Eq. (3).
For flavor-changing couplings, the result is finite

and depends only on the IR value of the effective
coupling gaW : while individual diagrams in Fig. 1 are
UV divergent, the divergences cancel when summed
over intermediate up-type quark flavors. Because the
divergent terms are independent of quark mass, the
unitarity of the CKM matrix requires that they sum
to zero. This is in contrast with models possessing a
direct ALP-quark coupling, in which the FCNC rate is
sensitive to the UV completion of the theory [44, 45].

Diphoton Searches for ALPs: We now discuss the
prospects for the sensitivity of current and future probes

to the ALP model in Eq. (2). We divide our discussion
according to the two principal production modes: sec-
ondary ALP production from rare decays of SM mesons,
and primary ALP production at colliders.

ALP production in rare meson decays is, by far, the
most promising new search mode. The quark coupling
in Eq. (3) mediates FCNC decays of heavy-flavor mesons
such as B → K(∗)a and K → πa. To compute the rates
of B-meson decays to pseudoscalar and vector mesons,
we employ the hadronic matrix elements calculated using
light-cone QCD sum rules [50, 51]. For K± → π±a, we
use the hadronic matrix element resulting from the Con-
served Vector Current hypothesis [52–54] in the flavor-
SU(3) limit assuming small momenta. The matrix ele-
ment for K0 → π0a is related to that of K± → π±a by
isospin symmetry, and so the matrix element for the KL

(KS) mass eigenstate is found by taking the imaginary
(real) part of the K± → π±a matrix element [55]. We
keep only the leading terms from Eq. (3) that are unsup-
pressed by external momenta. The decay rates are:

Γ(B → Ka) =
M3
B

64π
|gabs|2

(
1− M2

K

M2
B

)2

f20 (M2
A)λ

1/2
Ka ,

Γ(B → K∗a) =
M3
B

64π
|gabs|2A2

0(M2
a )λ

3/2
K∗a,

Γ(K+ → π+a) =
M3
K+

64π

(
1− M2

π+

M2
K+

)2

|gasd|2 λ1/2π+a,

Γ(KL → π0a) =
M3
KL

64π

(
1− M2

π0

M2
KL

)2

Im(gasd)
2 λ

1/2
π0a,

where λKa =
[
1− (Ma+MK)2

M2
B

] [
1− (Ma−MK)2

M2
B

]
, along

with analogously defined λK∗a, and λπ+,0a. f0(q) and
A0(q) are appropriate form factors from the hadronic
matrix elements, obtained from Refs. [50] and [51], re-
spectively. For the a mass range we study, Ma � MW ,
the dominant decay mode is a→ γγ.

We begin our phenomenological study with the sig-
nature B → K(∗)a, a → γγ, which has the best sensi-
tivity to ALPs. While the same rare meson decay with
a → γγ is also predicted in models with pseudoscalars
possessing only direct quark couplings [48], the diphoton
mode is only dominant for ALP masses below the pion
threshold in those scenarios. Moreover, to our knowledge,
no such search has been carried out, nor has the SM
continuum process B → K(∗)γγ been previously mea-
sured [56]. There are measurements of the processes
B → K(∗)π0, π0 → γγ at BaBar and Belle [57–60],
which are similar to our proposed ALP searches but are
restricted to Mγγ ∼ Mπ0 . These branching ratios are
measured with 2σ uncertainties ∼ 10−6, thus this value
serves as a concrete benchmark for conservatively esti-
mating the sensitivity to B → K(∗)a. Since the ALP
searches are a straightforward resonance search, however,
backgrounds can be estimated using sidebands, and we
expect current and future B-factories will have even bet-
ter sensitivity to Br(B → K(∗)a).
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FIG. 2. Sensitivity of proposed searches in the ALP param-
eter space assuming the ALP decays primarily to two pho-
tons. We show the reach of our proposed B → Ka (dashed
lines) and B → K∗a searches (dot-dashed lines), for sensitiv-
ity to branching ratios of 10−6 and 10−8. We also derive new
constraints from rare K decays from K+ → π+a (red) and
KL → π0a (purple). The dotted red lines indicate the reach
we find from dedicated searches for e+e− → aγ at current
and upcoming B-factories. Existing projections are shown
with dotted lines for a proposed dedicated search in beam-
dump mode at NA62 (gray), and for a recently-proposed
beam-dump experiment, SHiP (gray). Shaded regions indi-
cate current bounds from beam-dump experiments (gray) and
LEP (light blue).

We therefore show in Fig. 2 our projections for ALP

searches in B± → K±
(∗)
a, a → γγ for two branching

fraction benchmark sensitivities (10−6 and 10−8). We do
not consider ALP masses around the π0, η, and η′ masses,
and we conservatively require that the ALP decay within
L < 30 cm of the collision point to be observable. Cur-
rent BaBar and Belle data, as well as the upcoming Belle
II experiment [61], have the potential to improve sensi-
tivity to the ALP coupling gaW by up to three orders
of magnitude over current constraints, providing a clear
motivation for new ALP searches in rare meson decays.

The ALP can also be produced in decays K → πa, a→
γγ, and we derive bounds that are indicated by the
shaded red and purple regions in Fig. 2. We extract
the bounds from existing measurements of the processes
K± → π±γγ and KL → π0γγ that have been carried
out by E949 [62], NA48/2, NA62 [63], and KTeV [64].
For K± → π±γγ, we obtain limits for Ma > 100 MeV
using measurements by NA48/2+NA62 of the branching
fraction in bins of Mγγ [63], requiring that the signal can-
not exceed the central value + 2σ in each bin. Taking
into account the kaon beam energy, we further require
that a decay within 10 m of the K± decay vertex so that
its photons are registered in the detector. We use the

E949 search for K± → π±γγ [62] for Ma . 100 MeV,
taking their bound on the partial branching fraction of
2.3×10−8 for pπ > 213 MeV and requiring that a decays
within 80 cm of the stopped kaon. For the KTeV search
in KL → π0γγ [64], we require that a decay within 1 m
of the primary KL decay (given a detector resolution of
≈ 0.3 m [65]), apply the provided signal acceptance and
require that the ALP signal not exceed the observed num-
ber of events (+2σ) in each Mγγ bin. We emphasize that
a dedicated sideband resonance search for ALPs in either
channel could improve the sensitivity to K → πa produc-
tion. Neither search constrains ALP masses around Mπ0 ;
while measurements of KL → π0π0 at KTeV are, in prin-
ciple, sensitive to ALPs around the π0 mass [66], they
are subdominant to existing limits.

In addition to ALP production in meson decays, di-
rect production of ALPs through their couplings to pho-
tons, at either lepton colliders or proton beam-dump fa-
cilities, is a promising possibility. At low-energy lepton
colliders, the reaction e+e− → γa, a → γγ [33] can give
a diphoton resonance in 3-photon final states. To our
knowledge, such a search has not been carried out at B-
factories. We compute the estimated sensitivity of dedi-
cated searches at BaBar and Belle II to gaW in this final
state (shown in Fig. 2), accounting for the leading-order
3γ background. The signal region consists of events with
three photons (Eγ > 200 MeV, −0.8 < cos θγ < 0.97,
and ∆Rγγ > 0.1) and one photon pair with Mγγ within
δMa of ma. The mass resolution δMa varies from 7− 70
MeV at BaBar [67] and comparable resolution at Belle
II across the 100 MeV < Ma < 10 GeV range; these val-
ues are consistent with the BaBar Mγγ resolution at the
π0 mass rescaled to higher/lower masses [68]. In addi-
tion to the 3γ search mode, we also considered exclusive
e+e− → e+e−a, a → γγ production [38] and found it
to be subdominant to other channels. At proton fixed-
target experiments, Ref. [36] proposed a dedicated run
in beam-dump mode at NA62, as well as estimated the
prospects for the recently proposed SHiP experiment [69],
and we show their projections for comparison in Fig. 2.

At high-energy lepton colliders, the ALP is highly
boosted and photons from a decay are merged, such
that the signature Z → γa, a → γγ is constrained by
diphoton searches at LEP [35]. LEP currently gives the
strongest constraints on a over much of the parameter
space we consider, although it can easily be superseded
by searches for a in rare meson decays.

The Invisible ALP: Up to this point, we have assumed
that the ALP is produced and decays through the mini-
mal interaction given in Eq. (2). However, since ALPs are
relatively weakly coupled to SM particles, they are also
excellent candidates for mediators between the SM and
hidden sectors. If the hidden-sector particles are lighter
than a, the ALP can have a large branching fraction to
invisible states. Our results for invisibly decaying ALPs
are summarized in Fig. 3.

Invisible ALP production in rare meson decays can be
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FIG. 3. Sensitivity of existing and planned searches to the
ALP parameter space assuming the ALP decays invisibly. We
apply a BaBar search for B → Kνν̄ to constrain the decay
B → Ka (shaded blue); this bound can be further improved
with Belle II (dashed blue). Similarly, data from E787 and
E949 is used to constrain K → πa in two mass ranges (shaded
red), with expected improvements from NA62 (dot-dashed
red). We show bounds on e+e− → aγ from a BaBar mono−γ
search (shaded orange) and the estimated reach for the same
search at Belle II (dotted).

detected via missing mass and/or momentum. A promis-
ing mode is the B → K + invisible reaction [70, 71]. A
recent BaBar search for B → Kνν̄ reported sensitivity to
this final state at the level of 10−5 in branching fraction
[72], and provided limits in bins of M2

inv/M
2
B with a max-

imum value of M2
inv/M

2
B ≤ 0.8. We applied the results of

the seach for the B+ → K+νν̄ final state to B+ → K+a,
taking the 2σ upper limit from the appropriate bin for a
given Ma. This result is shown in Fig. 3, along with a
projection for Belle II, where we assume that the statis-
tical uncertainty dominates in the measurement.

We also derive a 90% CL limit on ALP production in
K → πa, a → invisible (shown in Fig. 3) using the re-
sults of E787 and E949 [73], which searched for the SM
process K± → π±ν̄ν in two separate momentum bins
[74, 75]. We include a projection for the results of the up-
coming NA62 experiment, the goal of which is to observe
80 signal events for K± → π±ν̄ν with very high signal
purity [76]. In our projection, we scale the E787/E949
results by the ratio of the uncertainty on the SM process,
assuming only statistical uncertanties for NA62.

Direct production of invisibly-decaying ALPs
at lepton colliders arises from processes such as
e+e− → γa, a → invisible via the ALP couplings to
γγ and γZ. An existing monophoton and missing
momentum search at BaBar constrains invisible ALPs
within kinematic reach. We re-interpret the results of a

search for untagged Υ(3S)→ γA0, A0 → invisibles from
Ref. [77] (for more details, see Refs. [78, 79]). We find a
limit from BaBar of gaW ∼ (500 GeV)−1, as shown in
Fig. 3. Moreover, we estimate that Belle II will extend
coverage to gaW ∼ (2 TeV)−1 for Ma > 1 GeV, where
the search is statistics-limited. For Ma < 1 GeV, there is
a large systematic error and the improvement in sensitiv-
ity for Belle II is less pronounced, although this could be
ameliorated by improvements in background estimation
methods. We find that production of ALPs in meson
decays provide superior sensitivity for Ma < Mb, while
monophoton searches provide complementary sensitivity
above the B mass. Analogously, LEP monophoton and
missing momentum searches provide complementary
coverage at still larger masses [80], although we find
these searches are subdominant to B-factories for ALP
masses below ∼ 10 GeV.

Conclusions and Discussion: In this Letter, we have
studied the overlooked coupling of axion-like particles to
W± bosons. We find that ALPs in the 10 MeV < Ma ∼<
10 GeV mass range can be exquisitely probed with cur-
rent and upcoming low-energy, high-intensity accelerator
experiments. In particular, rare FCNC meson decays,
along with dedicated direct searches for ALP production
at B-factories, have the potential to improve sensitivity
to ALP-SM couplings by almost three orders of magni-
tude.

We have restricted our study to the effective interac-
tion shown in Eq. (3), which is independent of the spe-
cific UV completion of the EFT in Eq. (2). However, we
note that additional direct couplings of the ALP to SM
fermions can be generated by renormalization-group evo-
lution from the UV cutoff, resulting in cutoff-dependent
contributions to gadidj [44, 45]. The cutoff Λ satisfies Λ ∼
αW g

−1
aW , and we find that the UV-dependent contribu-

tions to ALP production are always subdominant to the
UV-independent coupling in Eq. (3) for our parameter
space. These UV-dependent couplings could, however,
induce very rare ALP decays such as a → µ+µ−, which
could be discovered in future B → K∗a, a → µ+µ−

searches and allow for a determination of the UV scale in
combination with measurements in the diphoton channel.

Finally, the portal studied in this Letter is ripe for ex-
ploration at high-energy hadron colliders due to the en-
hanced coupling of the ALP to electroweak gauge bosons
and rates that grow with energy in the EFT. Since high-
energy probes can depend on the UV completion of the
theory, it is beyond the scope of the low-energy probes
proposed here and we leave them for future study [81].
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