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The source-free Maxwell action is invariant under electric-magnetic duality rotations in arbitrary
spacetimes. This leads to a conserved classical Noether charge. We show that this conservation
law is broken at the quantum level in presence of a background classical gravitational field with a
non-trivial Chern-Pontryagin invariant, in a parallel way to the chiral anomaly for massless Dirac
fermions. Among the physical consequences, the net polarization of the quantum electromagnetic
field is not conserved.
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1. Introduction. It has long been known that
the source-free Maxwell equations in four dimensions are
manifestly invariant under duality rotations of the elec-
tromagnetic field Fµν → Fµν cos θ + ⋆Fµν sin θ, where
⋆Fµν is the dual strength tensor. It was proven in [1]
that this transformation is indeed a symmetry of the

action—at the level of the basic dynamical variables ~A,
and for an arbitrary spacetime—and the associated con-
served charge was identified. This symmetry extends to
the quantum theory in Minkowski spacetime. The goal
of this paper is to analyze whether the duality invariance
persists in quantum field theory in curved spacetimes or,
as for the chiral invariance of massless fermions, the pres-
ence of spacetime curvature induces an anomaly.
If the symmetry exists and leaves the vacuum state in-

variant, vacuum expectation values of operators that re-
verse sign under a discrete duality transformation, such

as FµνF
µν(x) = 2

[

~B2(x)− ~E2(x)
]

, must vanish. How-

ever, it has been found in [2] using adiabatic renor-
malization that this is not the case for a spatially flat
Friedmann-Lemaitre-Robertson-Walker (FLRW) space-
time

〈FµνF
µν〉 = 1

480π2

[

−9RαβR
αβ +

23

6
R2 + 4�R

]

, (1)

where Rαβ is the Ricci tensor and R its trace. This result
signals a breaking of the duality symmetry. On the other
hand, the same approach produces a vanishing value of

〈Fµν
⋆Fµν〉 = 4〈 ~E · ~B〉 in FLRW spacetimes. Given its

pseudo-scalar character, this quantity is expected to be
proportional to the Chern-Pontryagin invariant density
Rµνλσ

⋆Rµνλσ , where ⋆Rµνλσ = 1/(2
√−g)ǫµναβR λσ

αβ ,
which vanishes in FLRW backgrounds. This was indeed
worked out in [3], finding that

〈Fµν
⋆Fµν〉 = 1

48π2
Rαβλσ

⋆Rαβλσ . (2)
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Although these results are suggestive, to establish the
existence of an anomaly one needs to go a step further
and analyze the extension of the classical conservation
law to the quantum theory. This was the strategy fol-
lowed to prove the existence of chiral anomaly for spin
1/2 fermions interacting with an external electromag-
netic [4] or a gravitational field [5] in the late 60’s. The
purpose of this paper is to built a similar formalism for
the electromagnetic field. Even though the gauge free-
dom adds new difficulties, the analysis brings out an
interesting formal relation between the electromagnetic
and fermionic dynamics which happens to be of great
utility. We show that Maxwell equations in radiation
gauge can be rewritten as spin 1 Dirac-type equations
βµ∇µΨ = 0, where Ψ is a two-component object made
of the potentials of the self and anti-self dual parts of the
electromagnetic field (these components describe right
and left circularly polarized waves, respectively), and the
matrices βµ are spin 1 analogs of the familiar γµ matri-
ces for spin 1/2 fermions. Duality rotations are then
generated by β5, which is defined in the standard way
(see below). The extensive theoretical machinery devel-
oped to derive the fermionic chiral anomaly can then be
extended to the electromagnetic case. In particular, fol-
lowing the well known Fujikawa method [6, 7], we show
that the duality anomaly originates in the failure of the
measure of the path integral to respect the symmetry
of the action. In the rest of the paper we spell out the
details of the analysis and summarize the interesting rela-
tion with other mathematical structures and the physical
consequences of the anomaly.

We follow the convention ǫ0123 = 1 and metric
signature (+,−,−,−).

2. Duality symmetry and Noether charge. A de-
tailed analysis of the duality symmetry of the classical,
source-free Maxwell theory was presented in [1] (see [8]
for an earlier work), and the reader is referred to these
references for details. At the level of the electromag-
netic potential, duality rotations are implemented by the
transformation δAµ = θ Zµ, with θ and infinitesimal pa-
rameter. Zµ is a vector field that, on shell, must satisfy
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∇µZν −∇νZµ = ⋆Fµν , and can be understood as a non-
local function of the basic variables Aµ [9]. By taking
exterior derivative, one can see that the transformation
above reduces to the more familiar form δFµν = θ ⋆Fµν

on shell. The associated conserved current can be easily
obtained from the Lagrangian density, and reads

jµD =
1

2
(Aν

⋆Fµν − IµνZν) , (3)

where Iµν = 2Fµν +
√−gǫµναβ∇αZβ , which on-shell

Iµν = Fµν . This current is gauge dependent and non-
local in space. However, the integral on a spatial Cauchy
hypersurface of its “0-component” produces a well de-
fined, gauge invariant conserved charge QD, which phys-
ically accounts for the difference in amplitude between
left and right polarized components of the electromag-
netic radiation. This quantity is often called the optical
helicity, and it is the Noether generator of duality trans-
formations.
Note that the first term in (3) is proportional to the

Pauli-Ljubanski vector Kµ ≡ −Aν
⋆Fµν used in [3] to

compute 〈Fµν
⋆Fµν〉 = −2 〈∇µK

µ〉. This vector is not
conserved, already at the classical level. Moreover, the
spatial integral of K0 is related to the so-called magnetic
helicity [10], which does not generate electromagnetic
duality transformations. The second term in (3),
− 1

2I
µνZν , is needed for the current to be conserved

in the classical theory and the associated charge to
generate duality rotations. The evaluation of 〈∇µj

µ
D〉,

which turns out to be equivalent to −〈(∇µF
µν)Zν〉,

requires to deal with an operator different from Fµν
⋆Fµν

and FµνF
µν . Consequently, a different calculation needs

to be elaborated in order to analyze the electromagnetic
duality in the quantum theory.

3. Weyl-type representation of Maxwell’s equa-

tions. Before moving to the analysis of the above conser-
vation law in the quantum theory, we rewrite Maxwell’s
equations in a convenient form for our purposes. We first
describe the formalism in Minkowski spacetime and then
generalized it to other geometries.
Maxwell equations in absence of charges and currents

in Minkowski spacetime decouple when written in terms

of the complex fields ~H± ≡ 1
2 [
~E± i ~B], with ~E and ~B the

electric and magnetic fields, and take the form

~∇× ~H± = ± i
∂

∂t
~H± , ~∇ · ~H± = 0. (4)

Using the familiar transformation properties of ~E and
~B under the Lorentz group, it is straightforward to

show that ~H+ and ~H− transform according to the (1, 0)
and (0, 1) representations, respectively. Under a duality

transformation ~E → cos θ ~E + sin θ ~B; ~B → − sin θ ~E +

cos θ ~B, we have ~H± → e∓iθ ~H±. Hence, ~H+ and ~H− are
the self and anti-self dual parts of the electromagnetic

field, respectively. Interestingly, duality rotations on ~H±

resemble conventional chiral rotations in the Dirac the-
ory. Moreover, equations (4) can be rewritten as

(αa)bi∂aH
i
+ = 0 , (ᾱa)bi∂aH

i
− = 0 , (5)

(bar denotes complex conjugation) where spacetime in-
dices a, b run from 0 to 3, and the internal index i runs

from 1 to 3 (note that ~H+ belongs to a three-dimensional
complex space associated to the (1, 0) Lorentz represen-

tation; and analogously ~H− to the (0, 1) one). Equations
similar to (5) were also written in [11, 12]. The compo-
nents of the (αa)bi matrices can be extracted from (4),
and it can be checked that they satisfy the following prop-
erties

α(aαb) ≡ 1

2

[

(αa)ci(α
b) j

c + (αb)ci(α
a) j

c

]

= ηabδji , (6)

α[aαb] ≡ 1

2

[

(αa)ci(α
b) j

c − (αb)ci(α
a) j

c

]

= −2
[

+Σab
] j

i
,

where +Σab is the generator of the (1, 0) representation
of the Lorentz group, and ηab is the Minkowski metric.
Note the analogy with the properties of the σµ = (I, ~σ)
matrices that appear in the Weyl equations (~σ are the
Pauli matrices) for massless spin 1/2 fermions.
Equations (5) are equivalent to the more conventional,

manifestly Lorentz-invariant equations ∂±
a F ab = 0, due

to the fact that the matrices (αa)bi provide an iso-

morphism between ~H+ and the self dual part of F ab,
+F ab = (αa)biH

i
+, where

±F ab ≡ 1
2 (F

ab ± i ⋆F ab). Sim-

ilarly, −F ab = (ᾱa)biH
i
−. Therefore, the (αa)bi matrices

can also be thought as the analog of the σa
AA′ or αa

αα̇

maps that relate spinors and spacetime vectors [13].
Given the divergenless condition in (4), we can now in-

troduce potentials ~A± for ~H±: ~H± ≡ i ~∇× ~A±. In order
to isolate the dynamical degrees of freedom we work in

the radiation gauge, ~∇ · ~A± = 0. With this choice, equa-
tions (4) translate to first-order differential equations for
~A±,

~∇× ~A± = ±i
∂

∂t
~A± , ~∇ · ~A± = 0, (7)

which turn out to have the same form as (4). Therefore,
they can also be written as Weyl-type equations

(αa)bi∂aA
i
+ = 0 , (ᾱa)bi∂aA

i
− = 0 . (8)

Notice that first order differential equations are obtained

at the expense of working with complex fields ~A±, and
therefore duplicating the number of independent vari-
ables. It is not difficult to see that equations (7) are
equivalent to Hamilton’s equations for the canonical for-
mulation of Maxwell’s theory if we split them into real
and imaginary parts [14]. The familiar second order dif-

ferential equations � ~A± = 0 arise from (8) by acting

with the operator (αc) j
b ∂c in the first equation and with

(ᾱc) j
b ∂c in the second one, and then using the properties

written in (6).



3

The generalization to curved spacetimes follows the
same procedure as for the Dirac case. Namely, equations
(5) for the fields translate to

(αµ)νi∇µH
i
+ = 0 , (ᾱµ)νi∇µH

i
− = 0 , (9)

and similarly for the potentials

(αµ)νi∇µA
i
+ = 0 , (ᾱµ)νi∇µA

i
− = 0 , (10)

where the α-matrices in curved spacetime are obtained
from the flat space ones by using the vierbein formalism

(αµ)νi(x) = eµa(x) e
ν
b (x) (α

a)bi . (11)

The equivalence with the familiar Maxwell equations in
curved spacetimes, ∇µ

±F
µν

= 0, is easily shown from
(9) by taking into account that the covariant derivative
in the above equations satisfies ∇β(α

µ)νi = 0.
An even closer analogy with the Dirac equation can be

achieved by combining together the two sets of equations
in (10)

βµ∇µΨ(x) = 0 , (12)

where we have defined [15]

Ψ ≡
(

A i
+

A− i

)

, βµ ≡ i

(

0 (ᾱµ) i
ν

−(αµ)νi 0

)

.(13)

The βµ-matrices inherit from the αν -matrices the follow-
ing properties

β̄(µβν) = −gµν I , (14)

β̄[µβν] = 2

(

+Σµν 0
0 −Σµν

)

, (15)

where round (square) brackets denote symmetrization
(anti-symmetrization), and I is the identity matrix when
acting on Ψ. Furthermore, we can construct the chiral
matrix in the standard way

β5 ≡ i

√−g

32
ǫµνσρβ

µβ̄νβσβ̄ρ =

(

−I3×3 0
0 I3×3

)

,

which can be used to write the duality transformation in
the form of a conventional chiral rotation

(

Ai
+

A− i

)

→ eiθβ5

(

Ai
+

A− i

)

=

(

e−iθAi
+

eiθA− i

)

. (16)

In analogy with the terminology used for fermions, Ai
±

describe right and left-handed (circularly polarized)
radiation.

4. The quantum anomaly. To explore whether the
classical conservation law extends to the quantum the-
ory, we rely on the well known Fujikawa’s path integral
approach. Transition amplitudes for the quantized free
electromagnetic field in the radiation gauge can be ex-
tracted from the following path integral [7, 16]

〈Af , tf |Ai, ti〉 =
∫

DX DA
(1)
k DA

(2)
k eiSM [A] , (17)

(sum over k is understood) where A
(1,2)
k represents

the two transverse (linear) polarizations of the po-
tential field, and SM [A] = − 1

4

∫

d4x
√−gFµνF

µν is
the Maxwell action. On the other hand, DX ≡
DA0 det

1/2 [−∇µD
µδ(3)(x− y)], where Dµ is the spatial

covariant derivative. The radiation gauge fixing is im-
plicitly included in the measure [7]. We now rewrite
this expression in terms of Ψ. To do this, first we re-
call the relation between linear and circular polarization

A
(1)
k = 1√

2

[

A+
k +A−

k

]

and A
(2)
k = i√

2

[

A+
k −A−

k

]

; and

then notice that the functional measure can be rewritten
in a suggestive form, DA

(1)
k DA

(2)
k = − 1

2DΨ̄DΨ, where

we have defined Ψ̄ ≡ Ψ†β0. Finally, we arrive at

〈Af , tf |Ai, ti〉 =
1

2

∫

DX DΨ̄[A]DΨ[A]eiSM [A] . (18)

Recall that, despite the notation, the variables Ψ and Ψ̄
are not Grassmann numbers.
To evaluate the impact of a duality transformation

in the path integral (18) we use again Noether’s theo-
rem. In quantum field theory and particularly in gauge
theories, the second version of the theorem—in which
the infinitesimal parameter θ is promoted to an arbi-
trary function of space and time subject to appropri-
ate fall-off conditions—happens to be more convenient
(see e.g. [7, 17]). The variation of the Maxwell action
under a transformation of the basic dynamical variables
δAµ = θ(x)Zµ, with δA0 = 0, is

δSM = −
∫

d4x
√−g θ(x)∇µj

µ
D, (19)

where the resulting jµD agrees with (3). Note that at
the level of the field strength, the transformation implies
δFµν = θ(x) ∗Fµν − Zµ∇νθ(x) + Zν∇µθ(x). This differs
from the transformation used in [18], where it is assumed
that δFµν = θ(x) ∗Fµν .
Quantum anomalies arise from the non-invariance of

the measure in the path integral [6, 7]. The trans-
formation properties of the measure are given by the
Jacobian J , DΨ̄′DΨ′ = JDΨ̄DΨ. Note that the du-
ality rotation leaves DX invariant. To evaluate J it
is more convenient to move to the Euclidean regime.
Now, the fact that the operator D = βµ∇µ is hermi-
tian, guarantees the existence of an orthonormal basis
Ψn of eigenstates (DΨn = λnΨn) under the inner prod-
uct (Ψn,Ψm) ≡

∫

d4x
√−gΨ†

nΨm = ℓ2δnm, where ℓ is an
arbitrary constant with dimensions of length; physical
observables are insensitive to its value, so we fix ℓ = 1.
With this, the expression for the Jacobian can be derived
by expanding the fields Ψ and Ψ̄ in terms of this complete
basis, and reads

J = e+i2
∑∞

n=0

∫
d4x

√
−gθ(x)(Ψ†

nβ5Ψn) . (20)

Form this, the expression for the vacuum expectation
value 〈∇µj

µ
D〉 can be obtained by recalling that the path
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integral is independent of the name of variables
∫

DΨ̄[A]DΨ[A]eiSM [A] =

∫

DΨ̄[A′]DΨ[A′]eiSM [A′]

=

∫

DΨ̄[A]DΨ[A] J eiSM [A]−i
∫
d4x

√
−gθ(x)〈∇µj

µ

D〉, (21)

and therefore 〈∇µj
µ
D〉 = 2

∑∞
n=0(Ψ

†
nβ5Ψn). The right-

hand side of this expression is not well-defined (is ul-
traviolet divergent) and must be renormalized. We fol-
low a regularization based on the well known heat kernel
expansion (see e.g. [17] for details). The kernel of the
quadratic operator β̄µβν∇µ∇ν , whose eigenvalues are
λ2
n, can be written as

K(τ ;x, x′) ≡
∞
∑

n=0

e−iτλ2

n Ψn(x)Ψ
†
n(x

′). (22)

where τ plays the role of regularization cut-off. With
this, we can formally write

〈∇µj
µ
D〉 = 2 lim

τ→0
Tr[β5K(τ ;x, x)]. (23)

where the trace refers to Ψ-indices. The importance
of the heat kernel regularization method relies in the
asypmptotic expansion of K(τ ;x, x) in the limit τ → 0

K(τ ;x, x) ∼ − i

16π2τ2

∞
∑

k=0

(iτ)kEk(x) . (24)

The functions Ek(x) are local geometric quantities, con-
structed from the quadratic operator β̄µβν∇µ∇ν ; they
depend on the metric and its first 2kth derivatives. The
first few coefficients of the asymptotic kernel expansion
are: E0(x) = I, E1(x) =

1
6R I−Q, and

E2(x) =

[

1

72
R2 − 1

180
RµνR

µν +
1

180
RαβµνR

αβµν

]

I

− 1

30
�R+

1

12
WµνW

µν +
1

2
Q2 − 1

6
RQ+

1

6
�Q,

where Wµν = [∇µ,∇ν ], and Q is defined by writing the
wave equation as −β̄µβν∇µ∇νΨ ≡ (� + Q)Ψ = 0. Ex-
plicit computations produce

Q ≡
(

Qi
j 0

0 Q̄i
j

)

, (25)

with Qi
j = −[+Σµν ]i k Rµναβ [+Σαβ ]kj . Now, bringing

the expansion (24) to (23) one finds that all terms in the
sum (24) with k > 2 clearly give a vanishing contribution
in the τ → 0 limit. One can also check that for k < 2 the
terms in the sum vanish because the trace with β5 selects
the imaginary part, and Im{TrQ} = 0. Henceforth,

〈∇µj
µ
D〉 = i

8π2
Tr[β5E2(x)] . (26)

The crucial point is then to evaluate this quantity. Using
(25) one has Tr[β5E2] =

1
12Tr[β5W

µνWµν ] +
1
2Tr[β5Q2].

Notice that the values of Wµν and Q are related to the

representations of the Lorentz group associated to the
physical degrees of freedom of the electromagnetic theory,
namely (1, 0) and (0, 1). This is in close analogy with the
chiral anomaly for spin-1/2 fermions, where the (1/2, 0)
and (0, 1/2) representations play an important role. Af-
ter a long calculation, one arrives at Tr[β5W

µνWµν ] =
2iRµναβ ⋆Rµναβ and Tr(β5Q2) = −iRµναβ ⋆Rµναβ (de-
tails will be published elsewhere). Taking all factors into
account, one gets

〈∇µj
µ
D〉 = 1

24π2
Rµνλσ

⋆Rµνλσ. (27)

Since the heat kernel asymptotic series (24) does not
depend on the vacuum state chosen, this expectation
value is (vacuum) state independent.

5. Conclusions and final comments. The above
result implies that the charge QD associated to the du-
ality symmetry of the Maxwell action is no longer con-
served in the quantum theory in a general spacetime; its
time derivative is given by the spatial integral of (27).
Since in flat spacetime QD represents the difference in
number between photons of opposite helicity [8], this re-
sult can be interpreted as a non-conservation of the helic-
ity of the quantum electromagnetic field in curved space-
times.
A physical background where this anomaly may lead

to observational consequences are rotating astrophysi-
cal objects, described approximately by a Kerr metric
(Rµνλσ

⋆Rµνλσ is proportional to the angular momentum
of the source [19]). Light-rays coming from different sides
of a rotating object such as a black hole, galaxy or clus-
ter, not only would bend around, but an effective differ-
ence in polarization could also be induced between them.
In particular, this effect would affect the polarization of
the cosmic microwave background photons. The quanti-
tative details for phenomenological implications will be
analyzed in a future work.
Interestingly, the anomaly (27) can be understood

as a physical realization of the Hirzebruch signature
(index) theorem [20]. The anomaly arises as the
difference in the number of right-handed and left-
handed zero-eigenvalue solutions of the operator βµ∇µ,
∫

d4x
√−g 〈∇µj

µ
D〉 = 2[nL − nR]. nL and nR can be

computed from the (0, 1) and (1, 0) irreducible repre-
sentations of the Lorentz group [21], respectively, and
one obtains agreement with (27). This is also in analogy
with the fermionic chiral anomaly, which can also be
obtained from an index associated to the (1/2, 0) and
(0, 1/2) irreducible representations of the Lorentz group.
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