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We introduce a tensor renormalization group scheme for coarse-graining a two-dimensional tensor
network that can be successfully applied to both classical and quantum systems on and off criticality.
The key innovation in our scheme is to deform a 2D tensor network into small loops and then optimize
the tensors on each loop. In this way, we remove short-range entanglement at each iteration step
and significantly improve the accuracy and stability of the renormalization flow. We demonstrate
our algorithm in the classical Ising model and a frustrated 2D quantum model.

Introduction In recent years, the tensor network
(TN) approach [1, 2] has become a powerful theoreti-
cal [3–24] and computational [8, 25–60] tool for studying
condensed matter systems. Many physical quantities, in-
cluding the partition function of a classical system, the
Euclidean path integral of a quantum system, and the ex-
pectation value of physical observables, can be expressed
in terms of tensor networks. Evaluating these quanti-
ties is reduced to the contraction of a multidimensional
tensor network. In the two dimensional case, many al-
gorithms [8, 32, 37–41, 43, 45–50, 53–57] have been de-
veloped to implement the approximate tensor contrac-
tions. Among these, the tensor renormalization group
approach introduced by Levin and Nave [38] and its gen-
eralizations [8, 22, 39, 43–47, 55, 56, 61] have unique fea-
tures: the tensor contraction is based on a fully isotropic
coarse-graining procedure. Moreover, when applying the
method to a system on a finite torus, the computational
cost is lower than those based on matrix product states
(MPS) [32, 37, 41, 48–50, 53, 54].

However, the Levin-Nave tensor network renormaliza-
tion (TRG, also referred as LN-TNR here) [38] is based
on the singular value decomposition (SVD) of local ten-
sors, which only minimizes the truncation errors of tree
tensor networks. Several improvements [45–47] have
taken into account the effect of the environments, but
they are still essentially based on tree tensor networks.
These approaches cannot completely remove short-range
entanglements during the coarse graining process. For
example, in the 2D TN calculation of a partition function
(or a path integral) TNR based on simple SVD cannot
simplify the corner-double-line (CDL) tensor [38], despite
the CDL tensor describing a product state that should
be simplified to a 1-dimensional tensor. In Ref. [8], this
issue was seriously discussed. The authors pointed out
that to further remove short-range entanglement, it is
crucial to optimize the tensor configurations that con-
tain a loop. However, due to the computational cost,
only a crude iterative method is used to implement the
loop optimization strategy. We refer to that method as
Gu-Wen tensor network renormalization (TEFR, also re-
ferred as GW-TNR here). Ref. [8] showed that GW-TNR

can simplify CDL tensors, resulting in a simple fixed-
point tensor for gapped/short-range correlated phases.
This led to the discovery of symmetry-protected topo-
logical (SPT) order. Recently, Ref. [55, 56] introduced
a method based on multi-scale entanglement renormal-
ization ansatz (MERA) [33] to completely remove short-
range entanglement, even in critical systems. This ap-
proach is referred to as Evenbly-Vidal TNR (EV-TNR).

In this paper, we develop a new practical and accurate
algorithm called Loop-TNR, which can optimize loop-like
tensor configurations more effectively than GW-TNR.
Loop-TNR can completely remove the short-range en-
tanglement within a loop at each coarse-graining step,
for both on- and off-critical systems. The performance of
Loop-TNR is greater than EV-TNR, and it has a lower
computational cost. To demonstrate this, we computed
the central charge and scaling dimensions of the critical
Ising model, and then examined the accuracy and stabil-
ity of these data when undergoing coarse-grained trans-
formations. All TNR methods can produce accurate cen-
tral charge and scaling dimensions. However, their stabil-
ities are significantly different. Loop-TNR and EV-TNR
provide good stability (their data remain accurate after
tens of iterations), while LN-TNR has the worst stability
(its data remain accurate only for a few iterations).

Our results suggest that all TNR approaches can pro-
duce a fixed-point tensor which appears as the low-index
part of the tensor (with a proper choice of basis). The
high-index part is not represented by the fixed-point ten-
sor, and can be considered to be the “junk” part of the
tensor. As we perform more TNR iterations, the junk
part may grow and eventually destroy the fixed-point ten-
sor at low indices. The accuracy of an algorithm repre-
sents the accuracy of the fixed-point tensor at low indices.
Its stability represents the growth rate of the junk part
of the tensor. We have found that Loop-TNR can signif-
icantly reduce the growth rate of the junk part. More-
over, Loop-TNR can be used to compute physical mea-
surements of 2D projected entangled-pair states (PEPS)
with high accuracy.

Loop-TNR algorithm The Loop-TNR algorithm
has the same purpose as GW-TNR [8]; to eliminate lo-



2

(a) (b)

(e) (d)

(c)(f)

�

2

�

2

=

(h)

(g)
TATB

TA TB

T0
B T0

A

T0
A T0

B

T1

T2T3

T4
1

2

3

45

6

7

8

�

�
�

��

�

�

��

� �

FIG. 1. (Color online) Three key steps of the Loop-TNR
algorithm. (a) The entanglement filtering step. Projectors
are inserted to eliminate local entanglements on the squares
labeled with grey circles (see (g) for details). (c) The loop
optimization step. Each of the shaded squares is deformed to
a octagon made up of 8 rank-3 tensors with bond dimensions
no greater than χ. The best approximation is found by mini-
mizing the cost function in (h). (e) The same coarse graining
step as in the standard LN-TNR algorithm. (h) The cost
function of the loop optimization can be regarded as the dis-
tance between two MPS wave functions. The well-developed
variational MPS method is applied to minimize the cost func-
tion.

cal entanglement on a loop and determine the correct
structures of fixed-point tensors. However, Loop-TNR
significantly improves the numerical stability and accu-
racy of the renormalization group (RG) flow, especially
for critical systems. The following illustrates the three
main steps of the Loop-TNR algorithm. The first and
last steps are exact, and the second is approximate. The
method is discussed with regards to a square lattice, but
generalizations to other lattices are straightforward.

The Loop-TNR methods begins with an entanglement
filtering step [Fig. 1(a) and (g)] with two important fea-
tures. First, it provides a canonical gauge for every ten-
sor, and filters out the local entanglement of off-critical
systems. More specifically, two projectors are inserted
on each bond shown in Fig. 1(g). These projectors are
constructed in an iterative way based on QR decompo-
sitions [62]. Subsequently, the tensors are redefined by
combining the original tensors with the nearest projec-
tors [see Fig. 1(g)] to complete the filtering step. In the

Supplemental Materials, we show that this approach can
completely remove the CDL tensors. Thus, for off-critical
systems containing CDL tensors (with gauge transforma-
tions), our method can simplify the tensors and reduce
the bond dimensions. Although there is no bond reduc-
tion in critical systems, the canonical gauge provided by
this method can enhance the performance of the follow-
ing step. This step is quite efficient because the overall
computational cost scales as O(χ5), where χ is the bond
dimension of the tensor.

In the next step the tensor network must be deformed
from a square lattice to a square-octagon lattice [see
Fig. 1(c)], as in the LN-TNR algorithm. However, ap-
proximations are necessary to avoid increasing the bond
dimensions of the octagons. In the LN-TNR algorithm,
this is achieved by minimizing the following single-site
cost functions:

,
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The optimal S values are found using SVD and keep-
ing only the largest singular χ values. Here, “·” means
tracing over the indices of connected bonds.

The Loop-TNR algorithm uses an alternative method
to reduce the bond dimensions. First, we define a cost
function on the small patch shown in Fig. 1(h), i.e.,

f = ||T1 ·T2 ·T3 ·T4−S1 ·S2 ·S3 ·S4 ·S5 ·S6 ·S7 ·S8||2 (1)

where the shaded square is deformed to an octagon. Since
the cost function is now defined on a loop, we can remove
the short-range entanglement inside this loop and signif-
icantly improve the accuracy, especially for critical sys-
tems. Furthermore, there is an efficient way to find the
optimal S tensors by viewing each patch as a wave func-
tion made up of matrix product states (MPS) with peri-
odic boundary conditions. The eight dotted lines shown
in Fig. 1(h) are the physical legs of the MPS, and the
solid lines are the virtual legs of the MPS. Minimizing the
cost function is equivalent to minimizing the distance be-
tween two MPS. Thus, S tensors can be optimized using
the well-developed variational MPS method [2, 29, 62].
The computational cost of this step scales as O(χ6). The
final step is the same as that of the LN-TNR algorithm.
As shown in Fig. 1(e), a coarse-grained square lattice is
obtained by contracting the tensor over the inner indices
within the circles. The overall computational cost of all
the steps only scales as O(χ6), which is significantly more
efficient than other improved LN-TNR methods, such as
SRG/HOSRG algorithms (O(χ7) ∼ O(χ10) [45–47]), and
EV-TNR algorithms (O(χ7) [55] and O(χ6) [56, 63]). Be-
low, we demonstrate the advantages of the Loop-TNR
algorithm using the classical Ising model on a square lat-
tice.
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FIG. 2. (Color online) Comparison of the relative errors of
the free energy per site computed using LN-TNR and Loop-
TNR. Results were obtained on a square lattice with 250 spins.
(a) Relative error as a function of bond dimension χ at the
critical point. (b) Relative error as a function of temperature
for off-critical Ising models.

Classical Ising model The partition function of the
2D classical Ising model is given by Z =

∑
{σ} exp

(β
∑
〈ij〉 σiσj). It can also be expressed as the contrac-

tion of a 2D tensor network with χ = 2 [38]. In this
model, the spins are localised on the links of the square
lattice. Each local tensor T = T Ising

u,l,d,r has the following
nonzero components:

T Ising
1,2,1,2 = e−4β , T Ising

2,1,2,1 = e−4β , T Ising
1,1,1,1 = e4β ,

T Ising
2,2,2,2 = e4β , others = 1. (2)

The first step is to compute the free energy of this
model with 250 spins, so that it saturates to the value of
the thermodynamic limit. Fig. 2 shows the relative error
of the free energy per site at and away from the criti-
cal temperature Tc. At the critical point [see Fig. 2(a)],
the error of Loop-TNR decays much faster than the er-
ror of LN-TNR. When χ ≤ 16, the error of Loop-TNR
decays almost exponentially with χ. This demonstrates
a significant improvement over LN-TNR. In Fig. 2(b),
the errors of Loop-TNR remain almost constant for all
temperatures near the critical point. When χ = 8, Loop-
TNR has an accuracy in the order of 10−7. At the same
point LN-TNR has an accuracy of 10−4 ∼ 10−5. Other
improved methods, such as SRG and HOSRG [45–47],
can reduce the error by up to three orders of magnitude
at off-critical conditions, but by only one order of magni-
tude at criticality. The recently proposed EV-TNR algo-
rithm [55] can achieve the same accuracy with the same
“effective” bond dimensions in the octagon (but a larger
overall bond dimension [62]). However, Loop-TNR has a
lower computational cost than EV-TNR.

After applying several steps of Loop-TNR, we obtain
an approximate fixed-point tensor with proper normal-
ization and gauge fixing, which encodes the low-energy
physics of the critical system. To prevent gauge fixing at
the final step, C4 lattice symmetry may be imposed on
the RG flow. This produces a single rank-3 tensor that
is approximately invariant at criticality [62].
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FIG. 3. (Color online) Comparison of central charge and scal-
ing dimensions for LN-TNR and Loop-TNR at different itera-
tion steps. The red dotted line denotes the central charge, the
blue (light grey) solid lines denote the scaling dimensions in
the Z2-odd sector, and the black solid lines denote the scaling
dimensions in the Z2-even sector. In the L = 2 (L = 4) case,
a transfer matrix is constructed using two (four) columns of
tensors [shown in (g) and (h)]. The central charge and scal-
ing dimensions are determined from the eigenvalues of the
transfer matrix [8].

As proposed in Ref. [8], the transfer matrix shown in
Fig. 3(g) can be constructed, and the central charge and
lowest scaling dimensions determined from the eigenval-
ues of the transfer matrix. When χ = 24 and with 218

spins, these conformal data have extremely high accura-
cies(up to five digits):

c h1 h2 h3

Loop-TNR: 0.500001 0.1250001 1.000006 1.124994

EV-TNR: 0.50001 0.1250004 1.00009 1.12492

Exact: 1/2 1/8 1 9/8

For comparison, the central charge and the scaling di-
mensions obtained using EV-TNR under the same con-
ditions are given [55] (Here χ denotes the largest bond
dimension used in that scheme).

In addition to improving the accuracy of the central
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charge and scaling dimensions, Loop-TNR also signifi-
cantly improves their stabilities. Fig. 3 compares the
results from LN-TNR and Loop-TNR. In the LN-TNR
case shown in the left-hand column, the high-level scal-
ing dimensions start to merge with the low-level scaling
dimensions after a few iteration steps. This indicates
that the high-index “junk” starts to merge quickly with
the low-index approximate fixed-point tensor [62]. In
Fig. 3(a), the h = 2 and h = 2.125 scaling dimensions are
destroyed by the “junk” after 10 iteration steps. Corre-
spondingly, LN-TNR fails to produce the accurate scaling
dimensions, even for primary fields. In general, both sta-
bility and accuracy deteriorate at higher scaling dimen-
sions (or, equivalently, higher-index tensor elements).

The conformal data are significantly improved using
Loop-TNR. As shown in the right-hand column of Fig. 3,
these data remain accurate up to 40 iteration steps in
the case of χ = 16, and even longer when χ = 32. More-
over, the high-index “junk” is well separated from the
low-index scaling dimensions. By increasing χ, a greater
number of scaling dimensions beyond the primary fields
can be resolved from the approximate fixed-point tensors.
As shown in Fig. 3 (d) and (b), the h = 3 and h = 3.125
scaling dimensions are clearly visible in the χ = 32 sim-
ulation, while they are difficult to distinguish from the
high-index “junk” when χ = 16.

We have shown that for higher bond dimensions, the
proper RG flow lasts longer. Thus, we believe that at
the infinite χ limit, Loop-TNR can determine an infi-
nite dimensional fixed-point tensor described by Ising
CFT at the continuum limit (with proper normalization
and gauge fixing). For instance, four columns of tensors
may be used to construct the transfer matrix [shown in
Fig. 3(h)], which is equivalent to using χ = 256. As
shown in Fig. 3(f), a greater number of scaling dimen-
sions can be evaluated, and the accuracy is greatly im-
proved. The result shown in Fig. 3(f) suggests that the
complete information of a CFT is encoded in the ap-
proximate fixed-point tensor. If more tensors are used to
construct the transfer matrix, it is possible to reconstruct
the whole conformal tower to a given accuracy. Moreover,
we have found evidence that the operator product expan-
sion (OPE) coefficients are also encoded in the low-index
approximate fixed-point tensors. How to compute these
coefficients will be discussed in future work. Because the
central charge, scaling dimensions, and OPE coefficients
of primary fields constituent the complete set of data for
a CFT, the low-index approximate fixed-point tensors
can completely determine the low-energy physics with an
emergent conformal symmetry. The high-index “junk” is
subject to the conformal symmetry-breaking perturba-
tions introduced by truncation errors, which cannot be
prevented in any numerical simulations with a finite χ.

Variational energy for a 2D quantum model
Loop-TNR can compute the physical quantities of 2D
projected entangled-pair states (PEPS), especially those
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FIG. 4. (Color online) Benchmark of the variational energy of
the D = 3 PEPS proposed in Ref. [64] for the maximally frus-
trated J1−J2 antiferromagnetic Heisenberg model on a square
lattice (with J2 = 0.5J1). Here, we consider a 256 sites sys-
tem with PBC. Because the benchmark energy (dashed line)
is an extrapolation for infinite systems, it could be slightly
lower than the actual variational energy for 256 sites.

states with divergent correlation lengths. We tested
our algorithm by calculating the variational energy of
the D = 3 PEPS proposed in Ref. [64]. This is a
variational resonating valence bond (RVB) ansatz for
the J1 − J2 antiferromagnetic Heisenberg model on a
square lattice around the maximally frustrated regime
(J2 = 0.5J1). The extrapolated ground state energy was
obtained in Ref. [64] using the boundary MPS method
[3, 5, 32, 40, 65]; the value of which is shown as the
black dash-dot line in Fig. 4. The results of LN-TNR
and Loop-TNR were calculated using a 256-site sys-
tem with periodic boundary condition (PBC). Since this
PEPS has a divergent correlation length, the energy from
LN-TNR is highly frustrated, and far from the accurate
value. Conversely, the energy determined from Loop-
TNR quickly converges to the accurate value. Here, only
20 sweeps were carried out when minimizing the cost
function Eq. (1) by the variational MPS method [2, 29].
Using more sweeps would have improved the results.

Conclusions and discussions We have developed
the Loop-TNR algorithm, a coarse-graining transforma-
tion based on loop optimizations, to significantly improve
the RG flow for both critical and off-critical systems. We
demonstrated the advantage of Loop-TNR using the clas-
sical Ising model on a square lattice. High accuracy and
stability of the central charge and the lowest scaling di-
mensions were observed at criticality. Furthermore, good
accuracy was achieved in the computation of the varia-
tional energy of a frustrated 2D PEPS.

Thanks to the concept of loop optimization, we may
integrate the well-developed 1D algorithms with LN-
TNR to enhance its performance. The integration with
iTEBD [31] gives rise to GW-TNR [8], the integration
with MERA [33] results in EV-TNR [55], and now the in-
tegration with variational MPS [29] leads to Loop-TNR.
From the viewpoint of quantum field theory, our way
of removing local entanglement is equivalent to integrat-
ing out local modes during the RG transformation. As
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a result, Loop-TNR works better than the algorithms
based on tree tensor networks (such as LN-TNR and
SRG/HOSRG), where the local modes are only removed
by a hard cut. For future works, we will explore the
structure of the fixed-point tensor for a CFT. The 3D
generalization of Loop-TNR is also a promising direc-
tion, where the ”loop-optimization” will be replaced by
the ”membrane-optimization”.
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