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We develop an effective medium theory for electromagnetic wave propagation through gapless non-
uniform systems with dynamic chiral magnetic effect. The theory allows to calculate macroscopic-
disorder-induced corrections to the values of optical, as well as chiral magnetic conductivities. In
particular, we show that spatial fluctuations of optical conductivity induce corrections to the effective
value of the chiral magnetic conductivity. The absolute value of the effect varies strongly depending
on the system parameters, but yields the leading frequency dependence of the polarization rotation
and circular dichroism signals. Experimentally, these corrections can be observed as features in
the Faraday rotation angle near frequencies that correspond to the bulk plasmon resonances of a
material. Such features are not expected to be present in single-crystal samples.

Ignited by the field of topological insulators, the inter-
est to geometric properties of band structures has spread
to gapless systems by now. Among the latter, Weyl
semimetals seem to have attracted the largest attention,
partly due to their non-trivial topological properties [1–
6], partly due to the experimental verification of their
existence [7–14].

There have been a substantial number of theoretical
proposals on how the geometric properties of Weyl met-
als manifest themselves in observable experimental quan-
tities related, for instance, to magnetotransport [15–19],
non-local transport [20, 21], or strain [22–25] phenom-
ena. However, in Weyl systems, or gapless topological
systems in general, one necessarily deals with systems
with gapless bulk. This means that at least in principle,
they manifest all responses pertinent to a more mundane
metal with the same symmetries. This implies that care-
ful quantitative understanding of various experiments is
required in order to disentangle the geometric features of
the observed responses. In particular, the omnipresent
disorder effects must always be carefully studied.

In this paper, we describe how macroscopic sample in-
homogeneities affect optical tests of the dynamic chiral
magnetic effect via Faraday rotation measurements. We
show that in thin films of metals with low carrier con-
centration, macroscopic fluctuations of local conductivity
affect the frequency dependence of the measured optical
polarization rotation signal, creating sharp features near
the plasma edge of the metal, which are absent in single
crystals.

The chiral magnetic effect (CME) is defined as the ex-
istence of a contribution to the electric current density, j,
driven by a magnetic field, B, which yields the following
expression for the electric current density in the simplest
isotropic case:

j(ω) = σ(ω)E(ω) + γ(ω)B(ω). (1)

The first term on the right hand side of Eq. (1) repre-
sents the usual optical conductivity response to an elec-
tric field E. The coefficient γ(ω) is in general non-zero

in non-centrosymmetric crystals with gyrotropic point
groups [26]. Its possible tensorial properties are discussed
below. The ω → 0 limit of γ(ω), which can be non-zero
in a metal, is known as the chiral magnetic conductivity
in the literature. Here, we consider a more general case
of frequency-dependent γ(ω), keeping the name of the
chiral magnetic conductivity for it.

There are two basic types of the CME, pertaining to
the cases of purely static, and slowly oscillating B-field,
which are appropriately called static and dynamic CME,
respectively.

The static CME is of purely topological origin, and
relies on the existence of Weyl points, and Berry curva-
ture monopoles associated with them, in a band struc-
ture [15, 27–31]. However, the static CME does not oc-
cur in equilibrium crystals [32, 33]: it requires an imbal-
ance between the chemical potentials near Weyl points
with opposite signs of Berry monopole charges. This
imbalance is in general hard to achieve, but when it is
reached via the chiral anomaly, the static CME mani-
fests itself either as the negative longitudinal magnetore-
sistance [15, 17, 34], or non-local voltages in thin film
samples [20]. In this sense, the static CME has been
observed via magnetotransport measurements in [35–38]
(see Ref. [39, 40] for further references and review of
recent results), and via non-local voltage measurements
in [41].

Here we focus on the dynamic CME, which does exist
in equilibrium gyrotropic metals, and describes their lin-
ear response to slowly oscillating electromagnetic fields.
Its low-frequency limit is of geometric origin: It comes
from the local geometry of electronic bands, rather than
their topology, and is due to the existence of orbital mag-
netic moment of quasiparticles in systems with non-zero
Berry curvature [42–44]. It also does not require the ex-
istence of Berry monopoles, but tends to be large when
the monopoles are present [42, 45].

Physically, the dynamic CME is a particular manifesta-
tion of the natural optical activity phenomenon [42, 43].
This observation prompts an experimental measurement
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of the chiral conductivity γ(ω) by studying the Faraday
rotation of polarization of light transmitted through a
slab of gyrotropic material.

The (complex) polarization rotation angle is deter-
mined solely by the phase difference accumulated by the
two circular polarizations of light as they travel through
the bulk of the material [46]:

θ(ω) =
µ0

2
γ(ω)d, (2)

where d is the thickness of the slab in the propagation
direction. The rotation angle is not affected by possible
surface conduction, either [47]. Therefore, the Faraday
rotation appears to be the most direct way to measure
γ(ω).

Here, we show that macroscopic inhomogeneities make
the effective macroscopic observable γeff(ω) different from
its value predicted by the band structure calculations,
γBS(ω). In particular, γeff(ω) has sharp features around
the plasma edge of the metal, which is not expected
for γBS(ω). Instead, at frequencies large compared to
the inverse momentum relaxation time on the Fermi sur-
face, and small compared to the lowest interband split-
ting at the Fermi surface, γBS(ω) is a real frequency-
independent constant [42]. More generally, when the fre-
quency of the incident light is not small compared to
relevant band splittings, γBS(ω) does depend on ω, but
obviously is still not expected to have any features at the
plasma edge of a metal.

In what follows, we set out to construct the effective
medium theory for a macroscopically disordered sample
with CME. The effective medium theory for composite
materials, and metals in particular, has been developed
over the past century [48–51], but it has not been con-
structed for metals with natural optical activity. We fill
this void below.

General formalism – We assume that a non-uniform
sample is characterized by macroscopic inhomogeneities,
which occur on length scales large compared to the micro-
scopic ones, like the Fermi wave length, or elastic mean
free path. The sample is then characterized by a space-
dependent (optical) conductivity, σab(r, ω), and the CME
tensor, γabc(r, ω).

If the variation of electromagnetic fields is slow on the
scale over which the response coefficients change, the
electromagnetic response of a medium can be described
in terms of an effective medium theory, characterized by
an effective translationally-invariant (non-local) optical
conductivity tensor. The determination of this effective
tensor in the presence of the CME is the central aim of
this paper.

In general, the space-dependent response coefficients
can be decomposed into the sums of their volume-
averaged parts, denoted with overlines, and random parts

with zero averages:

σab(r, ω) = σab(ω) + δσab(r, ω),

γabc(r, ω) = γab(ω) + δγabc(r, ω). (3)

Since the CME is a relatively weak effect, and spatial
fluctuations of δγabc will lead to even weaker effects, we
set δγabc → 0 in what follows.

It should be stressed that the variation of γabc is in-
evitably present near sample boundaries; however, this
variation does not play any role in the effective medium
construction, and only affects the boundary conditions
for electromagnetic waves scattering off a sample with
CME or natural optical activity [52, 53].

In what follows, we assume ergodic behavior for fluc-
tuations of response coefficients, in the sense that vol-
ume averages for various quantities coincide with their
ensemble averages over disorder realizations. Physically,
this means that we neglect the mesoscopic fluctuations
of effective medium parameters.

To construct the effective medium theory, we use the
Maxwell equations to describe the sample-specific re-
sponse of a disordered material to electromagnetic fields,
and then average it over the disorder realizations. The
electromagnetic response of the medium is fully deter-
mined by its non-local optical conductivity tensor. To
the lowest order in spatial gradients of the electric field,
one has the following expression for the ath component
of the current density in a non-uniform chiral metal:

ja = σab(r, ω)Eb +
i

ω
γabc(ω)∇cEb. (4)

This expression is the anisotropic version of Eq. (1)
in view of the Faraday’s law for monochromatic fields,
B = ∇×E/iω. It is well known that, in a time-reversal
system, the antisymmetric part of the optical conduc-
tivity tensor is fully determined by spatial gradients of
γabc [52]. Since we take γabc(ω) to be equal to its spatially
averaged (equally, disorder-averaged) value, σab(r, ω) is
a symmetric local conductivity tensor.

To proceed, we make several simplifying assumptions,
which are easily relaxed within the theory developed be-
low, but increase the clarity of presentation. We go back
to the assumption that the medium is isotropic, hence
σab = σδab, γabc = γεabc. Under these assumptions, the
expression for the current density simplifies to

j = (σ(ω) + δσ(ω, r))E + γ(ω)B. (5)

The fluctuations of the local conductivity tensor are
assumed to be Gaussian, with a given correlator:

〈δσ(ω, r)δσ(ω, r′)〉 = Kω(r− r′). (6)

The effective medium is then characterized by effective
conductivity, σeff, and effective chiral magnetic conduc-
tivity, γeff, which relate the average current density to
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the average electric and magnetic fields:

j = σeffE + γeff B. (7)

Using the Maxwell equations, the electric field for a
given realization of δσ(r, ω) can be shown to satisfy

∇(∇E)−∇2E =
ω2

c2
ε(ω)E+

γ(ω)∇×E

ε0c2
+
iω

ε0c2
δσ(ω, r)E,

(8)
with

ε(ω) = ε∞ +
iσ(ω)

ε0ω
. (9)

The corresponding (retarded) Green’s function obeys
the following equation:(

∇a∇b −∇2δab −
ω2

c2
ε(ω)δab +

γ(ω)

ε0c2
εabd∇d

− iω

ε0c2
δσ(ω, r)δab

)
Dbc(r, r

′;ω) = δacδ(r− r′).(10)

For weak Gaussian disorder, the effective medium the-
ory reduces [54] to the standard self-consistent Born ap-
proximation for the disorder-averaged Green’s function,
Dbc(r−r′, ω), which depends on the difference r−r′ due
to the restored translational invariance.

Averaging over the “disorder realizations” is done ac-
cording to the standard rules for systems with quenched
disorder [55]. In particular, such averaging restores the
translational invariance, and the medium is characterized
by a self-energy in the expression for the average retarded
Green’s function of the electric fields. In the Fourier
space, the equation for the disorder-averaged Green’s
function becomes(

q2δab − qaqb −
ω2

c2
ε(ω)δab + i

γ(ω)

ε0c2
εabdqd

−Σab(q, ω)
)
Dbc(q, ω) = δac. (11)

The Feynman diagrams for the self-energy are shown
in Fig. 1. In real space it is given by

Σab(r− r′;ω) = − ω2

ε20c
4
Kω(r− r′)Dab(r− r′;ω), (12)

which can be rewritten in the Fourier space as

Σab(q, ω) = − ω2

ε20c
4

∫
(dq′)Kω(q− q′)Dab(q

′, ω), (13)

where (dq) ≡ d3q/(2π3), and Kω(q) is the usual Fourier
transform of Kω(r).

To capture the CME, one has to keep the linear in
q dependence of the self-energy. Due to the assumed
isotropy of the medium, the latter can be decomposed as

Σab(q, ω) ≈ ω2

c2
Σ0(ω)δab −

i

ε0c2
Σ1(ω)εabcqc. (14)

FIG. 1: The Feynman diagrams for the self-energy in the
self-consistent Born approximation.

From Eq. (11) it is clear that Σ0,1 play the role of correc-
tions to the average values of ε(ω) and γ(ω), respectively.
From (13), the expressions for Σ0,1 read

Σ0(ω)δab = − 1

ε20c
2

∫
(dq)Kω(q)Dab(q, ω),

Σ1(ω)εabc =
iω2

ε0c2

∫
(dq)(∂qcKω(q))Dab(q, ω).(15)

The fact that the tensor structures on left and right
hand sides of these equations match is guaranteed by
the isotropy of the medium.

Limiting ourselves to the linear order in γ, we finally
obtain

Σ0(ω) =
1

3ε20c
2

∫
(dq)Kω(q)

(
2

q2
ω − q2

+
1

q2
ω

)
,

Σ1(ω) = γ(ω)
ω2

3ε20c
4

∫
(dq)

q∂qKω(q)

(q2 − q2
w)2

. (16)

where q2
ω = ω2

c2 (ε(ω) + Σ0(ω)). The effective medium
parameters are given by

σeff(ω) = σ(ω)− iε0ωΣ0(ω),

γeff(ω) = γ(ω) + Σ1(ω). (17)

Eqs. (16) and (17) are one of the central results of this
paper. They allow to determine the effective medium
parameters for any particular model characterized by a
given correlator of optical conductivity fluctuations. It is
straightforward to show that these equations reproduce
the textbook effective medium theory results [56], if one
neglects the self-consistency.

In the equation for Σ0, the first term in round brack-
ets describes the contribution from the fluctuations with
two transverse polarizations, while the second one is the
contribution from the longitudinal electric field fluctu-
ations. The latter are dispersionless, since we did not
include quadratic spatial dispersion (O(q2)) terms in the
dielectric tensor. In general, the contribution from the
transverse modes is small in parameter ω2`2/c2 ∼ `2/λ2

0,
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where ` is the scale of macroscopic inhomogeneity, and
λ0 is the wavelength of the light with frequency ω in
vacuum.

A model with short-ranged correlations – To apply gen-
eral expressions (16) to a non-trivial situation, we con-
sider a metal with low carrier density, being treated
within the Drude model with spatially-dependent elec-
tron density. In practice, one may talk about a doped
semiconductor, taking into account spatial fluctuations
of the dopant density. We will show that ensuing spa-
tial fluctuations of the optical conductivity result in plas-
monic features in the frequency dependence of γeff(ω).

Within the Drude model, the spatially-dependent op-
tical conductivity has the following form:

σ(r, ω) =
ε0ω

2
pτ(r)

1− iωτ(r)
. (18)

We are interested in plasmonic features in γeff(ω),
hence we specialize to frequencies close to the average
plasma edge, ω0. For ω0τ � 1, the conductivity can be
approximated according to

σ(ω, r) ≈
iε0ω

2
p(r)

ω
+
ε0ω

2
p(r)

ω2τ(r)
. (19)

In what follows we will neglect the real part of conduc-
tivity, since dissipation (ImΣ0 6= 0) will be generated by
wave decay into plasmons. However, the (positive) sign
of the real part of the conductivity sets the sign of ImΣ0

(also positive), see below.
Wrting ω2

p(r) = ω2
0 + δω2

p(r), with

〈δω2
p(r)δω2

p(r′)〉 = Ω4 exp (−κ(r− r′)) , (20)

we obtain

Kω(q) = −ε
2
0Ω4

ω2

8πκ

(q2 + κ2)2
. (21)

Applying Eqs. (16), we obtain a self-consistent equation
for Σ0(ω):

Σ0(ω) = −1

3

Ω4

ω4

1

1− ω2
0

ω2 + Σ0(ω)
. (22)

For |ω2 − ω2
0 | < 2Ω2/

√
3 one has

ReΣ0(ω) =
ω2

0 − ω2

2ω2
,

ImΣ0 =
1

2

√
4

3

Ω4

ω4
−
(
ω2

0

ω2
− 1

)2

, (23)

and for |ω2 − ω2
0 | > 2Ω2/

√
3:

ReΣ0(ω) =
ω2

0 − ω2

2ω2
+

sgn(ω2 − ω2
0)

2

√(
ω2

0

ω2
− 1

)2

− 4

3

Ω4

ω4
,

ImΣ0 = 0. (24)

FIG. 2: Relative change in the real (panel (a)), and imaginary
(panel (b)) parts of the effective chiral magnetic conductivity
for Ω/ω0 = 0.1 and Ω/cκ = 1. The latter value is at the
applicability limit of the present theory. For smaller Ω/cκ,
the curves retain their shape, but have to be scaled down
appropriately, see main text.

Here sgn(x) is the sign function.
Calculating Σ1, we get the following expression for

γeff(ω):

γeff(ω) = γ(ω)

[
1 +

(
Ω

cκ

)4
1

(1− iqω/κ)4

]
. (25)

As before, q2
ω = ω2

c2 (ε(ω) + Σ0(ω)).
The results of this calculation are plotted in Fig. 2. It is

observed that due to the disorder-induced scattering into
the dispersionless plasmons the local part of the effective
dielectric tensor of the medium acquires an imaginary
part sharply peaked around the plasma frequency. In
turn, this translates into sharp features in the circular
dichroism and polarization rotation signals, which are
determined by Imγeff(ω) and Reγeff(ω), respectively.

The results depend strongly on the values of two di-
mensionless parameters: (Ω/ω0)2, and (Ω/cκ)2. The
former measures the inhomogeneous broadening of the
plasma edge; the appearance of the latter is tied to
the structure of the expression for Σ1, Eq. (16). The
main contribution to the corresponding integral comes
from wave vectors q ∼ κ, where κ is the inverse correla-
tion length of optical conductivity fluctuations. The pa-
rameter (Ω/cκ)2 then represents the ratio of the typical
disorder-induced magnetic field fluctuation in an electro-
magnetic wave with q ∼ κ and electric field amplitude Eq,
which is δB ∼ Ω2Eq/ωκc

2, to the average magnetic field
of the wave, Bq ∼ κEq/ω. This parameter determines the
applicability region of the theory, which is (Ω/cκ)2 . 1.

It is hard to theoretically estimate the aforementioned
parameters for a given material. Instead, they can be
determined from the widths and maximum height of ex-
perimental peaks, analogous to those shown in Fig. 2. For
the particular model considered, the peak width scales as
Ω2/ω2

0 , while peak values of circular dichroism and po-
larization rotation signals scale roughly as (Ω/cκ)2 and
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(Ω/cκ)4 , respectively.

In summary, we have developed the theory of disorder-
induced corrections to the chiral magnetic effect and nat-
ural optical activity in samples with macroscopic inho-
mogeneities. The theory is applicable to situations in
which the electromagnetic fields vary smoothly on the
inhomogeneity scale. In particular, the theory pertains
to the case of Weyl metals with low electron density, in
THz frequency range. In general, the disorder-induced
correction are not large in absolute magnitude, but are
the primary source of sharp frequency dependence of the
chiral conductivity around the plasma edge of the metal.
This observation is pertinent to any helical metals with
natural optical activity, not just Weyl ones.

We would like to thank M. E. Raikh for useful dis-
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