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We present a first-principles-based many-body typical medium dynamical cluster approximation
TMDCA@DFT method for characterizing electron localization in disordered structures. This
method applied to monolayer hexagonal boron nitride shows that the presence of a boron vacancies
could turn this wide-gap insulator into a correlated metal. Depending on the strength of the elec-
tron interactions, these calculations suggest that conduction could be obtained at a boron vacancy
concentration as low as 1.0%. We also explore the distribution of the local density of states, a
fingerprint of spatial variations, which allows localized and delocalized states to be distinguished.
The presented method enables the study of disorder-driven insulator-metal transitions not only in
h-BN but also in other physical materials.
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Pioneering work on electron localization arising from
disorder [1], electron interactions [2], and a combination
of both [3–5] have been shown to lead to diverse emerg-
ing phenomena in a wide range of physical systems, one
of which is the insulator-metal transition (IMT) [6, 7].
Though disorder and electron interactions can indepen-
dently lead to an IMT, transport and scanning probe
measurements have shown that both are needed for a
proper characterization of real materials [4, 6, 8]. Com-
putational approaches for studying correlated, disordered
materials generally rely on either density functional the-
ory (DFT) [9] using supercells or the dynamical mean-
field approximation (DMFA) [10], including cluster ex-
tensions [11, 12]. While the DFT supercell approach
can only describe ordered defect structures, DMFA deals
explicitly with statistical disorder distributions [13], as
does the coherent potential approximation (CPA). Tra-
ditional DMFA/CPA methods use arithmetic averages in
their self-consistent-field (SCF) routines, and therefore
lose essential information about the distribution of the
local density of states ρ. Moreover, these methods use
arithmetically averaged density of states, ρa ≡ 〈ρ〉arit,
which cannot distinguish between extended and local-
ized states [14, 15]. Therefore, we will instead adopt
the typical medium dynamical cluster approximation
(TMDCA) [14–16], which is built around a geometri-
cally averaged density of states ρg ≡ 〈ρ〉geom. This lat-
ter average is sensitive to skewness in the local density
of states distribution P[ρ] [see Fig. 1(B)], making ρg a
suitable order parameter for characterizing localization
transitions [14, 15, 17, 18]. The TMDCA approach has
both experimental and theoretical support [6, 14–16, 19–
21] and has been successfully used to describe disordered
and/or interacting model systems [15, 16].

In this letter, we extend the TMDCA approach to
physical materials with electronic properties computed
from density-functional theory (TMDCA@DFT). See

schematic in Fig. 1(A). This first-principles-based many-
body approach is expected to provide further insight

FIG. 1. (A) Schematic of the TMDCA@DFT method. The
DFT SCF solution is downfolded and used in the primary
TMDCA SCF routine of a typical medium mapped by the
disordered lattice. The cluster solver has also a secondary
SCF routine to account for the response of electron interac-
tions [see the Supplemental Material (SM) [22] for details].
(B) Illustration of a local density of states distribution P[ρ]
that is approximately Gaussian (log-normal) for delocalized
(localized) states. (C) The typical density of states, defined
below, as a function of boron vacancy concentration δ and
Hubbard-U calculated at the Fermi level in monolayer hexag-
onal boron nitride. The typical density of states per unit cell
[Fig. 2(A)] ranging from 0 (blue) to 0.065 eV−1 (red) shows
an insulator-metal transition at roughly δ × U4

≈ 0.8 eV4.
The dashed line is intended to give a rough estimate of the
location of the transition in parameter space.
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FIG. 2. (A) The hexagonal structure of monolayer h-BN with
a highlighted unit cell defined by the lattice vectors ~a1 and ~a2.
(B) The DFT band structure (solid black bands) reproduced
by the downfolded Hamiltonian H0 (red dashed bands). The
large band gap Eg at the Brillouin zone corner points K makes
pristine h-BN an insulator.

into electron localization and IMTs in real materials.
Herein, we apply the TMDCA@DFT approach to ex-
plore a correlation-mediated IMT in monolayer hexag-
onal boron nitride (h-BN) [23–25] shown in Fig. 2(A).
As a two-dimensional (2D) crystal [23–28], monolayer h-
BN is a candidate material for use in electronics [29].
The challenge is that unlike graphene, h-BN lacks in-
version symmetry [30] with the difference in electroneg-
ativity between B and N sites making h-BN a wide-gap
insulator [31]. It has been shown that strain-engineering
could shrink the band gap [27, 32] but so far not enough
to make h-BN useful for field-effect transistors (FETs).
Motivated in part by the recent experimental observation
of IMTs in h-BN nanostructures [8] and related materi-
als [33], we explore the possibility to obtain conduction in
h-BN through a disorder-induced IMT. Our calculations
reveal an IMT requiring the presence of both electron
interactions and disorder with the transition following a
monotonic curve [see Fig. 1(C)]. Assuming a Hubbard-U
similar to that in graphene with U = 2.7 eV [34], our
calculations suggest that the IMT could potentially be
found at an averaged boron vacancy concentration δ as
low as 1.0%.
To study localization in the presence of disorder and

electron interaction, we adopt the Anderson-Hubbard
Hamiltonian of the form

H = H0 +
∑

iασ

V α
iσn

α
iσ + U

∑

iα

nα
i↑n

α
i↓, (1)

where H0 is the single-particle Hamiltonian, V α
iσ is a dis-

order potential, and nα
iσ is the number operator, where

i, α, and σ are site, orbital, and spin indices, respec-
tively. The three terms above describe respectively
single-particle, disorder, and electron interactions.
Herein, we obtain the single-particle Hamilto-

nian from DFT [9] calculations using the linearized
augmented plane-wave method, as implemented in
WIEN2K [35]. Structural and electronic optimization

was obtained using the Perdew-Burke-Ernzerhof [36]
exchange-correlation functional. We then apply a down-
folding method to generate, from the Kohn-Sham Bloch
functions, a set of symmetry-adapted Wannier func-
tions [37] that can accurately describe the states around
the Fermi level. In our case, these functions are boron
and nitrogen s, p, and d orbitals, and as can be seen in
Fig. 2(B), the obtained 18-band spin-restricted H0 accu-
rately reproduces the DFT band structure in the energy
interval of interest. Both band structures also show a di-
rect band gap Eg = 4.90 eV at the Brillouin zone corner
points, in good agreement with experiments [31].

Disorder can take many forms, including impurities,
adatoms, and vacancies. Regardless of the origin, we
describe disorder through the difference between the
single-particle Hamiltonian for the disordered and pris-
tine structures. Although this difference Hamiltonian
comprises off-diagonal as well as diagonal elements, the
former are generally smaller and for clarity has been
dropped from Eq. (1). In the boron nitride example, we
focus on boron vacancies, as the B sublattice is more
prone to defects due to the lower threshold energy for
knock-on damage than the N sublattice [24, 38, 39]. We
confirmed this observation from our calculations of the
vacancy formation energies in the B and N sublattices
[see Fig. 3(D)].

We use a disorder potential comprised of binary site
potentials V α

iσ = Vi ∈ {0,W}, where the two elements
represent the absence and presence of a vacancy, respec-
tively, with the vacancy potential W being a lot greater
than the material bandwidth. Random disorder config-
urations are then generated using the probability mass
functions P (Vi = W ) = δ and P (Vi = W ) = 0 for B and
N sites, respectively, where the averaged boron vacancy
concentration δ satisfies the stoichiometry B1−δN of the
disordered material.

Electronic properties, including many physical mea-
surable attributes, can be obtained knowing the single-
particle Green function. Obtaining the full single-particle
Green function for an infinite disordered lattice, however,
is not feasible. Therefore, we instead rely on approxi-
mate Green functions, in our case, based on the TMDCA.
The TMDCA is based on a formalism consistent with
the generalized dynamical cluster theory approaches to
correlated electron systems. We refer interested readers
to Refs. [4, 12]. The main steps of the TMDCA@DFT
self-consistency are outlined below with additional details
provided in SM [22].

Through a set of SCF equations, the TMDCA ap-
proach maps a disordered lattice onto a finite cluster em-
bedded in a typical medium, as illustrated in Fig. 1(A).
The cluster is a periodically repeated cell containing Nc

primitive cells, which results in the first Brillouin zone of
the original lattice being divided into Nc non-overlapping
cells, where each cell centered at the wave vector K con-
tains a set of wave vectors k̃ ≡ k−K, where k̃ and k are
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wave vectors generated by the translational symmetry
of the cluster and the original lattice, respectively [11].
The clusters allow for resonance effects and, by increas-
ing Nc, we can systematically incorporate longer-range
spatial fluctuations. We recommend using a cluster lat-
tice that preserves the symmetry of the original lattice,
and in that vein, we adopt a hexagonal cluster lattice in
our h-BN calculations with cluster lattice vectors being a
multiple of the original lattice vectors shown in Fig. 2(A).
The self-consistency procedure in Fig. 1(A) goes as

follows: (i) We make an initial guess of a hybridiza-
tion function Γ(K), which describes the coupling be-
tween the cluster and the effective medium. (ii) We cal-
culate a fully dressed cluster Green function Gc(E) =
(G−1 − V − ΣInt)−1, where G−1 is the cluster-excluded
Green function, V is the disorder potential, and ΣInt is
the second-order expansion of the electron interactions.
The self-energy ΣInt is obtained self-consistently, as il-
lustrated in the secondary SCF loop in Fig. 1(A). (iii)
We calculate the cluster density of states ρc = − 1

π
ℑGc

and average over a large number of configurations to ob-
tain the wave-vector-resolved, non-self-averaged typical
DoS [15, 16]

ρct(K) = 〈ρci 〉geom

〈

ρc(K)
1
Nc

∑

i ρ
c
i

〉

arit

, (2)

where 〈ρci 〉geom = exp 〈ln ρi〉arit is the diagonal elements
of ρc. The purpose of the second factor is to capture non-
local fluctuations. (iv) A cluster typical Green function
Gc

t(K) is then calculated from the Kramer-Kronig trans-
form of Eq. 2, which is subsequently used to calculate the
coarse-grained Green function

Ḡ(K) =
Nc

N

∑

k̃

[

Gc
t(K)−1+Γ(K)−H0(k)+H̄0(K)+µ

]−1

(3)
where the overbar depicts cluster coarse-graining and µ

is the Fermi level, which we obtained in the secondary
SCF loop mentioned in step (ii). (v) A new hybridization
function is obtained from

Γn(K) = (1− ζ)Γo(K) + ζ
[

(Gc)−1 − Ḡ−1
]

, (4)

where Γn (Γo) refers to the new (old) hybridization func-
tion and ζ is a mixing parameter. Γ(K) ≡ Γn(K) is
then used in (ii) to close the primary SCF loop. Con-
vergence is achieved when Gc

t = Ḡ. The convergence of
the TMDCA@DFT formalism as function of increasing
cluster size is discussed in the SM [22].
Let us at this point focus on our h-BN example. Be-

fore proceeding to the general case, let us first consider
the noninteracting limit. Figure 3(A) shows the typical
density of states (TDoS) for an Nc = 8 cluster at vari-
ous B vacancy concentrations δ. For delocalized states,
the TDoS is expected to be similar to the arithmetically
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FIG. 3. TMDCA@DFT results of h-BN obtained for Nc = 8
and U = 0. (A) and (B) show the TDoS and the local density
of states distribution, respectively, at three different δ. For
reference, (A) also includes the density of states of pristine h-
BN obtained from DFT and the Fermi level (vertical dashed
lines) from the TMDCA SCF calculations. (C) A comparison
of the density of states obtained using the supercell approach
with the TMDCA@DFT for δ = 25%. (D) The formation
energy as a function of boron and nitrogen vacancy concen-
trations.

averaged density of states (ADoS). Close to the localiza-
tion transition, however, the TDoS, unlike the ADoS, is
a strongly varying, non-self-averaging quantity with sub-
stantial weight only on a few lattice sites [14, 15, 17, 18].
As δ increases in Fig. 3(A), we see structure develop at
the valance band edge. The Fermi level also shifts to
lower energy defined with respect to δ = 0, implying
p-type doping. Even with a concentration as high as
δ = 30%, we find that the insulating phase is stabilized.
To further verify this, we performed relaxed supercell cal-
culations at δ = 6.2% (not shown) and δ = 25% shown
in Fig. 3(C). Both calculations show insulating behavior,
suggesting that vacancies alone are not sufficient to in-
duce an IMT in h-BN.

To gain insight into the energetics of the vacancy for-
mation and the stability of the disordered h-BN, we cal-
culated the formation energy ∆Ef ≡ Ev −E0, where Ev

and E0 are the total energies of the vacancy and pristine
structures, respectively. As shown in Fig. 3(D), ∆Ef is
positive and increases with increasing vacancy concen-
tration, though the energy cost is less for B vacancies.
Additionally, the lack of a kink in the ∆Ef curves indi-
cates an absence of a transition, a further confirmation
that the insulating state is stabilized against disorder.
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FIG. 4. TMDCA@DFT results of h-BN obtained for Nc = 8
and δ = 1.0%. (A) The TDoS for various U . At small U ,
impurity states develop near the valence band edge and as
U = 2.5 eV, these impurity states have hybridized with con-
duction band states, resulting in an insulator-metal transi-
tion. The vertical dashed line depicts the Fermi level. (B)
The local density of states distribution at U = 2.5 eV and
various energies. The distributions are characteristic of a dis-
ordered metal.

Next, we investigate the combined effects of vacancies
and electron interactions, focusing on the paramagnetic
phase. An exploration of the (δ, U) parameter space re-
vealed that an IMT occurs roughly at δ×U4 ≈ 0.8 eV4, as
shown in Fig. 1(C). In Fig. 4(A), we show the TDoS for an
Nc = 4 cluster at δ = 1.0% and various U . As in the non-
interacting limit, impurity states develop within the gap
for small U . Around U ≈ 2.5 eV, however, valence and
conduction states merge, signaling a transition from a
band insulator to a correlated metal. Thus, the presence
of interactions induces an IMT, even at a modest boron
vacancy concentration. We attribute the IMT to the in-
jection of mobile carriers caused by inelastic scattering
processes hybridizing localized and delocalized states [2].
In our case, the hybridization occurs between impurity
states from the valence and low-energy conduction band
states. There is no need for thermal activation; rather,
the necessary energy is mostly provided by the electron
interaction. That these correlated impurity states delo-
calize [40] also means that the carriers do not decay into
other localized states existing within the gap [41]. In-
stead, the disorder is screened [42] in these hybridized
states allowing them to become extended [2]. This rich
many-body physics underscores that electron interaction
is critical in the description of the IMT in h-BN.

An important physical observable for characterizing
disordered materials is the local density of states distri-
bution P[ρ], which could be measured in optoelectronic
experiments. More specifically, P[ρ] is a well-defined fin-
gerprint of the spatial variations of the local density of
states, which tends towards Gaussian and log-normal
distributions in the metallic and insulating phases, re-
spectively [6, 15, 16, 19], as illustrated in Fig. 1(B). Fig-
ures 3(B) and 4(B) show the normalized P[ρ] calculated
at various energies for various δ at U = 0 eV and
δ = 1.0% for U = 2.7 eV, respectively. In the nonin-
teracting limit, Gaussian distributions are observed for

E = −2.0 eV and E = 0 but not for E = 5.0 eV. This
is expected as the latter is located in the gap below the
conduction band, where the electrons are prone to being
localized. With interaction, P[ρ] is reminiscent of a dis-
ordered metal for all the energies considered [43]. Except
for the locations of the peaks, note that P[ρ] is qualita-
tively similar for the three energies. We are not aware
of any other computational studies of P[ρ] in the pres-
ence of interaction. In the interacting case, P[ρ] could
be identified as depicting the spatial nature of quasipar-
ticle many-body excitations rather than single-particle
states. We speculate that the correlation length of these
excitations, especially near the IMT, will be reduced due
to inelastic processes and multisite scattering, including
those from deeply trapped states.

In summary, we have presented a first-principles-based
many-body approach for characterizing localization in
disordered materials and applied it to study monolayer h-
BN in the presence of electron interactions and randomly
distributed boron vacancies. Our calculations show an
IMT, in which electron interactions play a critical role
by hybridizing impurity states with low-energy states in
the conduction band to form degenerate states within the
gap. This IMT opens up the possibility of conduction in
h-BN.
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Note added–During production, we became aware of
a related study of real materials in the non-interacting
limit [44].
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62(1), 76 (2003).

[15] C. E. Ekuma, H. Terletska, K.-M. Tam, Z.-Y. Meng,
J. Moreno, and M. Jarrell, Phys. Rev. B 89, 081107
(2014).

[16] C. E. Ekuma, S.-X. Yang, H. Terletska, K.-M. Tam, N. S.
Vidhyadhiraja, J. Moreno, and M. Jarrell, Phys. Rev. B
92, 201114 (2015).

[17] T. Nakayama and K. Yakubo, Fractal Concepts in Con-

densed Matter Physics, Springer Series in Solid-State

Sciences, vol. 140 (Springer, 2003); M. Janssen, Phys.
Rep. 295, 1–91 (1998); D. J. Thouless, Phys. Rep. 17,
93 (1974); ibid, J. Phys. C 3, 1559 (1970).

[18] C. E. Ekuma, H. Terletska, Z. Y. Meng, J. Moreno,
M. Jarrell, S. Mahmoudian, and V. Dobrosavljević, J.
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