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Abstract

Most substitutional solutes in solids diffuse via vacancies. However, widely used analytic models for dif-

fusivity make uncontrolled approximations in the relations between atomic jump rates that reduce accuracy.

Symmetry analysis of the hexagonal close packed crystal identifies more distinct vacancy transitions than

prior models, and a Green function approach computes diffusivity exactly for solutes in magnesium. We

find large differences for solute drag of Al, Zn, and rare earth solutes, and improved diffusion activation

energies—highlighting the need for exact analytic transport models.

PACS numbers: 66.30.J, 66.30.Fq, 66.10.cg
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Diffusion in crystals is a fundamental defect-driven process that controls a variety of different

phenomena in materials including ion transport, irradiation-induced degradation of materials, re-

crystallization, and the formation and growth of precipitates [1]. Developing new alloys requires a

precise knowledge of solute transport under various processing conditions. For example, magne-

sium alloy design focuses on precipitate formation and evolution [2–5], and randomizing the grain

texture for improved strain hardening [6–8]. Magnesium alloys may substitute for aluminum and

steel in aerospace and automotive industries with their higher specific strengths [9–11]. The grow-

ing interest in magnesium has driven experimental [12–19] and computational [20–23] studies

of transport coefficients of the common Al and Zn solutes that improve strength and rare earth

elements that improve ductility. Transport coefficients are fundamental inputs for models at the

length and time scales of microstructure evolution. However, computational modeling of transport

coefficients for Mg alloys has used oversimplified models that lead to incorrect predictions, despite

using accurate ab initio data as inputs [20–23].

In a multicomponent system, diffusivity is described using Onsager transport coefficients

LAB, which relates the flux JA of species A to a chemical potential gradient of species B:

JA = −
∑

B LAB∇µB. For vacancy-mediated diffusion of a two-component alloy, the transport

coefficients for solutes and vacancies are Lss, Lvv, and the off-diagonal coefficient Lsv = Lvs. In the

dilute limit, the solute diffusivity Ds = (kBT/cs)Lss is proportional to the vacancy concentration cv

and cs is the solute concentration. The off-diagonal coefficient can be either positive or negative:

the drag ratio Lsv(Lss)−1 is positive when the flow of vacancies drags solutes in the same direction,

and negative when solute flows in the opposite direction to vacancies. The off-diagonal transport

coefficient Lsv can change sign at the crossover temperature Tcross. The drag ratio determines how

vacancies (e.g. during solidification or irradiation) transport solute to produce non-equilibrium

solute segregation, change precipitation rates, or induce the Kirkendall [24] and nano-Kirkendall

[25] effects. Anisotropy in the drag ratio leads to unusual flow patterns of solutes [26].

To predict transport coefficients in magnesium alloys, we use a symmetry analysis for auto-

mated discovery and cataloging of transitions combined with an analytic, exact Green function

(GF) approach which avoids uncontrolled approximations [27, 28]. We identify transitions that

are incorrectly treated by the standard 8-frequency model for hexagonal close packed (HCP) crys-

tals [29–31] and even by the recent 13-frequency model [32]. The transition state energy of each

transition identified by the symmetry analysis is computed ab initio, and directly informs the GF

calculation of the transport coefficients. We find significant errors in the drag ratios and solute dif-
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fusivities computed by previous models for many technologically important solutes in magnesium.

The correct description of the vacancy jump network topology illuminates the atomistic-scale dif-

fusion mechanisms, and the exact calculation of transport coefficients in the dilute limit enables

predictive mesoscale modeling of alloys.

Computing transport coefficients requires accurate solute-vacancy binding and transition state

energies and entropies from ab initio. We use the planewave basis Vienna ab-initio simulation

package (vasp) [33–36] with the projector-augmented wave method [37, 38], the PBE generalized

gradient approximation exchange-correlation potential [39], and Brillouin zone integration with

a Monkhorst-Pack mesh and Methfessel-Paxton smearing [40, 41]. The lanthanide elements are

treated with a frozen 4 f -core, which introduces small errors (below 20 meV) for pure element

structures[42], Al-RE convex hulls[43], and is the basis for previous Mg-RE calculations[44].

All convergence criteria are chosen to keep numerical errors below 1 meV (c.f. supplemental

material). The climbing-image nudged elastic band method with one intermediate image deter-

mines transition state configurations and energies [45], and harmonic transition state theory [46]

with the hopping atom approximation [47, 48] computes Arrhenius attempt frequencies (rates).

Supplemental Tables SII–SIV show good agreement (deviations below 30 meV) between our cal-

culations and previous calculations [21–23, 44, 49–54] for the vacancy formation energies and

solute-vacancy binding, where available. Supplemental Tables SV and SVI compare the limited

set of transition state energies required in 8-frequency model from previous work [20–23] with our

complete dataset [55].

An exact GF approach [27] computes the transport coefficients for dilute solutes and vacancies

from our ab initio data. The hexagonal lattice ensures that the transport coefficients are diago-

nal but anisotropic with different basal plane and c-axis values. The symmetry operations in the

HCP space group P63/mmc [56] determine equivalent solute-vacancy complex states and equiva-

lent transition states. We identify transition states by the initial and final states, and consider two

transition states equivalent when a single space group operation can simultaneously transform the

initial and final states for one transition state into the other. From the solute-vacancy probabilities

and transition rates, we treat the correlated random walk [57–59] using the vacancy Green func-

tion: first computed in the absence of the solute, and then corrected for the presence of solute using

the Dyson equation. We compute the Green function without solute in reciprocal space, and the

Dyson equation correction in real space, taking advantage of computer-determined symmetry[28].

This approach is a generalization of the matrix method [60–62]. For the dilute limit with a single
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solute and single vacancy, the calculated transport coefficients are exact [27].
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FIG. 1. Possible vacancy-solute complexes out to sixth nearest-neighbors in a HCP crystal. Complexes are

identified by the position of the vacancy relative to the solute (orange “s”). There are nine unique complexes,

corresponding to 56 configurations after applying symmetry operations; vacancy positions below the solute

are not shown. Complexes are labeled by the shell distance between solute and vacancy (lighter colors

correspond to larger separation), and with “b” (basal), “p” (prismatic), and “c” (c-axis). Vacancy neighbor

distance is insufficient to identify symmetry unique complexes: the 1b and 1p complexes, and 4b, 4b and

4p complexes each have different binding energies.

In the HCP crystal, there are two unique first nearest-neighbor vacancy-solute complexes and

seven complex configurations that are one transition away; Figure 1 shows these complexes out to

6b. A solute has six first neighbors in the same basal plane (1b sites), and six in the neighboring

basal planes (1p sites). We expect these complexes to have the strongest solute-vacancy binding

energy. The solute-vacancy binding also changes the transition states for vacancy motion, leading

to various types of jumps: exchange with the solute, jumps between first neighbor sites, and

jumps away from the solute. The latter generates seven complex configurations; in the 8-frequency

model, these seven complexes and all further ones are assumed to have no vacancy-solute binding.

Figure 2 enumerates the 15 unique transitions for first neighbor vacancy-solute complexes.

Away from a solute, the vacancy can jump in a basal or pyramidal direction. The symmetry

unique transitions for complexes includes two types of vacancy-solute exchanges, four transition

states between first neighbor complexes, and another nine transitions from the two first neighbor to

the seven different “outer” complexes, which correspond to dissociation. In contrast, the standard

8-frequency model [29–31] assumes that the two different 1b to 1b transitions, that we call 1b-1b

and 1b-1b, have equal transition rates. Moreover, it assumes that all of the dissociation transition
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FIG. 2. Vacancy (v) jumps in an HCP crystal from 1b and 1p complexes, divided into basal and pyramidal

jumps. The 24 jumps correspond to two solute-vacancy exchanges (black and red arrows), eight vacancy

reorientations around the solute (arrows in blue), and 14 solute-vacancy complex dissociations (arrows in

green with outline in black from 1b configuration and outline in red from 1p configuration). In particular,

two reorientation jumps of the 1b complex that the 8-frequency model treats as equal are not related by

symmetry: 1b-1b (cyan) and 1b-1b (dark blue) jumps in the top-left figure. The symmetry inequivalence

can be identified by the different Mg atoms neighboring the transition states: Mg at 2p for 1b-1b and 1p

sites for 1b-1b.

rates can be reduced to two: one out of the 1b site, one out of the 1p site [63]. However, we find

that Zn, Al and rare earth elements have markedly different migration barriers for 1b-1b and 1b-1b

jumps and have different dissociation barriers (c.f. supplemental Tables SV and SVI). Recently,

Nandipati et al. also found the distinction between 1b-1b and 1b-1b jump using self-learning

kinetic Monte Carlo [64]. As previous computational studies [20–23] relied on the 8-frequency

framework to model diffusion and identify which transition states to compute, these uncontrolled

approximations can cause significant quantitative and qualitative errors in transport coefficients.

Note that even the recent 13-frequency model of Allnatt et al. also assumes that 1b-1b and 1b-1b

jumps are equivalent [32].

Solute drag requires a “ring” network around the solute [65, 66], so that the vacancy-solute

complex can reorient and produce long-range diffusion; Figure 3 shows the three minimal rings
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FIG. 3. Minimal networks of reorientation jumps for 1b and 1p complexes. (Left) Network in the basal plane

requiring only 1b-1b and 1b-1b jumps. (Middle) Network of 1p-1b and 1b-1b jumps. (Right) Network of

1p-1b and 1p-1p jumps. The other three pairings of jumps do not form closed ring networks, and are not

shown. Ring networks are necessary for a complex to diffuse as a unit, leading to positive drag ratios.

with the necessary pairs of jumps. For a complex to diffuse as a unit, a vacancy-solute exchange

must be followed by vacancy reorientation jumps around the solute; otherwise, exchanges keep

the complex in place. To make a ring network in HCP requires at least two “fast” jump rates.

However, the network topology is such that out of the six possible pairs of jumps, only three are

able to produce reorientation rings. Two pairs of transitions—combining 1p-1p with 1b-1b or

1b-1b—clearly lack sufficient connectivity to reorient a complex in arbitrary ways. It is surprising

that combining 1p-1b jumps with 1b-1b jumps fails to produce reorientation while combining 1p-

1b jumps with 1b-1b jumps does; this asymmetric jump network topology for 1b-1b and 1b-1b has

significant impact on the drag ratios.

basal 1b-1b

basal 1b-1b

c-axisbasal 

Tm

basal 1b-1b

basal 1b-1b

c-axisbasal 

Tm

FIG. 4. Effect of 1b-1b and 1b-1b asymmetry on the drag ratio Lsv(Lss)−1 of Zn and Al. Both the 8-

frequency and 13-frequency framework assumes ω1b-1b and ω1b-1b rates to be equal; this gives different

basal drag ratios if ω1b-1b or ω1b-1b is used for both rates (dotted-dashed lines), but does not affect c-axis

diffusion. The GF method treats the nonequivalent transitions when computing the correct basal drag ratio

(solid lines). The 8-frequency and 13-frequency framework introduce additional approximations which

affect drag ratios and crossover temperatures, and incorrectly predict large anisotropy in drag ratios.

Figure 4 shows the errors from using the 8-frequency and 13-frequency framework to compute
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the drag ratios of Zn and Al in Mg. For Zn and Al, the reorientation rates in the ring network are

fast and there is a significant difference in the 1b-1b and 1b-1b migration barriers, with lower 1b-1b

migration barriers (by 0.22 eV for Zn and by 0.14 eV for Al). The 8-frequency and 13-frequency

frameworks enforce enforces ω1b-1b = ω1b-1b, which produces significant errors. The faster ω1b-1b

rate gives a higher drag ratio, while the slower ω1b-1b rate gives a lower drag ratio—neither of

which agrees with the exact GF result. The correct behavior is difficult to reproduce with either

framework, as the ω1b-1p rate is slower than the ω1b-1b, but faster than ω1b-1b: the first two ring

networks in Fig. 3 contribute significantly to drag, but choosing a single value of ω1b-1b = ω1b-1b

affects the two rings differently. Moreover, all prior DFT calculations[20–23] only computed one

of the two barriers, as the 8-frequency model does not suggest that there are two distinct jumps

to consider. This error does not impact the c-axis drag ratio, while a small change in solute

diffusivity Ds is observed. It does explain the discrepancies in the migration barrier reported by

different authors, as each selected either 1b-1b or 1b-1b.

TmTm

GF
8-freq.
13-freq.

basal c-axis

FIG. 5. Effect of dissociation rates on drag ratio Lsv(Lss)−1 of La, Nd, Gd and Y. The 8-frequency frame-

work (dashed lines) and 13-frequency framework (dotted lines) reduces the nine distinct dissociation rates

to two and four, which causes errors in both basal and c-axis drag ratios. The 13-frequency framework

improves over the 8-frequency model but still has errors in drag ratios for Gd and Y, and predicts incorrect

anisotropy. Filled regions in grey with the bounds for basal drag from 8- and 13-frequency model captures

the approximation of ω1b-1b or ω1b-1b rates. Table I includes additional data on crossover temperatures.

Figure 5 shows the drag ratio is also affected by different dissociation rates for La, Nd, Gd

and Y in Mg. For these solutes, association and dissociation rates are faster than reorientation,
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TABLE I. Activation energies of diffusion Q and crossover temperatures Tcross computed with the GF

method, 8-frequency, 13-frequency model and available experimental data in the basal plane and along

the c-axis. All values are reported as basal | c-axis, while Nd, Ce, and La experiments correspond to poly-

crystals. Activation energies using GF method are lower by ∼0.1 eV compared to the 8-frequency model

for Nd, Ce, La and Gd; this improves the agreement with experiment for all except Ce. There are significant

changes to crossover temperatures, the 8-frequency calculation doesn’t predict drag for Gd and Y, and the

13-frequency predictions are off by more than 100 K for Nd, Ce, La and Ca along c-axis and for Gd and Y

in basal plane.

Solute Q (eV) Tcross (K)

8-freq. 13-freq. GF Experiment 8-freq. 13-freq. GF

Nd 1.18 | 1.20 1.12 | 1.12 1.08 | 1.13 1.16 [18] < 100 438 | 507 529 | 422

Ce 1.14 | 1.15 1.07 | 1.07 1.03 | 1.09 1.82 [12] 252 | 287 635 | 721 648 | 589

La 1.10 | 1.11 1.02 | 1.03 1.00 | 1.04 1.06 [12] 415 | 452 795 | 881 746 | 714

Gd 1.24 | 1.26 1.19 | 1.18 1.16 | 1.17 0.82 | 0.85 [16] — 175 | 155 341 | 218

Y 1.25 | 1.27 1.21 | 1.21 1.20 | 1.21 1.01 | 1.02 [16] — 106 | < 100 271 | 190

Ca 1.12 | 1.14 1.09 | 1.09 1.08 | 1.11 1.07 [19] 309 | 343 538 | 598 538 | 501

and positive drag ratio results from an “outer” vacancy ring network around the solute—similar

to the behavior in BCC and FCC lattices [65, 66]. There are three outer ring networks which

can contribute to drag: 1b-4b and 1b-4b; 1p-2p and 1b-2p; and 1b-4p, 1p-4p and 1p-3c. The 8-

frequency and 13-frequency frameworks reduces all nine of the different association/dissociation

transition states to two: 1b-∞ and 1p-∞, or four: basal and pyramidal type jump of 1b-∞ and

1p-∞, where “∞” is any non-first neighbor complex. We compare our full calculation to the

8-frequency (using 1b-6b and 1p-5p) and 13-frequency (using 1b-6b, 1b-4p, 1p-4p and 1p-5p)

models. These dissociation jumps in the 8-frequency model for La, Nd, Gd and Y are the slowest

dissociation rates; hence, the 8-frequency model underpredicts the vacancy residency time in the

outer ring network. This impacts the drag ratio, where the 8-frequency framework predicts no drag

for Nd, Gd and Y, and reduced drag for La. The improved 13-frequency model still has error in

drag for Gd and Y due to the incorrect contribution from 1b-4p, 1p-4p and 1p-3c ring as well as

from ω1b-1b=ω1b-1b rate assumption.

Table I shows improvement in solute diffusivity predictions for rare-earth and Ca solutes com-
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pared with available experimental data. The assumptions made in the 8-frequency framework lead

to inaccurate calculation of correlation factors and activation energies. Ghate [30] assumed a con-

stant value for the vacancy escape factor F = 0.736 in the 8-frequency model for solute correlation

factors ( fA,z, fA,b, and fB,x in Eq. (12–16) of [30]) affecting the probability for a vacancy return

after dissociation. Manning showed that in FCC crystals, F depends on the ratio of vacancy so-

lute association rate and vacancy migration rates in bulk, and hence depends on temperature [57].

The GF approach correctly computes F and its dependence on all of the transition rates near the

solute [27]. The errors from the 8-frequency or 13-frequency model are solute dependent, and

are larger for solutes with faster dissociation and exchange rates. Hence, rare earth solutes have

activation energies for diffusion that are lowered by 0.05−0.1 eV, improving agreement with exper-

imental measurements for all except Ce. The crossover temperature shows significant error when

computed using the 8-frequency framework, with some improvement as some approximations are

eliminated in the 13-frequency framework. The remaining disagreement with experiment sug-

gests new experimental studies, and a reexamination of the appropriateness of the frozen 4 f -core

approximation for lanthanides, especially for Ce.

A full symmetry analysis of solute-vacancy complex states and transition states combined with

an exact Green function methodology removes uncontrolled approximations from transport mod-

eling, and reveals significant errors in previous calculations. Identifying the symmetry unique

transitions in the vacancy jump network elucidates the fundamental mechanisms responsible for

solute drag and provide quantitative values for transport coefficients. Our analysis has application

to diffusivity calculations in other crystalline systems—especially where the solute-vacancy bind-

ing extends beyond first neighbors. Removing uncontrolled approximations from the prediction

of transport coefficients is important for the validation of ab initio methods, from which we can

identify possible systematic errors in the computation of atomic-scale diffusion mechanisms. Our

results also show the importance of proper symmetry analysis to identify atomic scale transport

mechanisms, even for well-studied crystalline systems like HCP.
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