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Understanding the behavior of molecules interacting with superfluid helium represents a
formidable challenge and, in general, requires approaches relying on large-scale numerical simula-
tions. Here we demonstrate that experimental data collected over the last 20 years provide evidence
that molecules immersed in superfluid helium form recently-predicted angulon quasiparticles [Phys.
Rev. Lett. 114, 203001 (2015)]. Most importantly, casting the many-body problem in terms of
angulons amounts to a drastic simplification and yields effective molecular moments of inertia as
straightforward analytic solutions of a simple microscopic Hamiltonian. The outcome of the angulon
theory is in good agreement with experiment for a broad range of molecular impurities, from heavy
to medium-mass to light species. These results pave the way to understanding molecular rotation
in liquid and crystalline phases in terms of the angulon quasiparticle.

Among its many peculiar properties, superfluid 4He is
quite averse to mixing with impurities which could serve
as a microscopic probe of the superfluid phase. As a
result, for several decades after the discovery of superflu-
idity by Allen, Misener, and Kapitza [1, 2], only macro-
scopic – hydrodynamic – properties of superfluid helium
have been studied in the laboratory. In the 1990’s, how-
ever, it was demonstrated that atoms and molecules can
be trapped in superfluid helium if the latter forms little
droplets containing on the order of a thousand helium
atoms [3–7]. Over the following years, trapping atoms,
molecules, and ions inside superfluid helium nanodroplets
– sometimes called ‘nanocryostats’ – emerged as an im-
portant tool of molecular spectroscopy [6–12]. Such nan-
odroplets allow to trap single molecules in a cold envi-
ronment (∼ 0.4 Kelvin), thereby isolating them from ex-
ternal perturbations. This allows to record spectra free
of collisional and Doppler broadening, as well as to study
species that are unstable in the gas phase, such as free
radicals.

While superfluid helium does not cause a substantial
broadening of molecular spectral lines, it affects molecu-
lar rotation. In particular, molecules in superfluid helium
nanodroplets acquire an effective moment of inertia, that
is larger compared to its gas-phase value [6, 9]. The rel-
ative magnitude of the effect increases from lighter to
heavier species and is somewhat similar to renormaliza-
tion of the effective mass for electrons interacting with a
crystalline lattice [13–16].

Semiclassically, molecular rotation in helium can be ra-
tionalized within the ‘adiabatic following’ model [6, 7, 17–
22]. There, it is assumed that the molecule induces a local
density deformation (a ‘non superfluid shell’) of helium
which co-rotates along with the molecule, thereby in-
creasing its moment of inertia. However, such a classical
approach does not allow to get insight into the intriguing
aspects of the problem arising from quantum many-body
physics. Helium, on the other hand, represents a dense,
strongly-interacting superfluid, where only a tiny frac-
tion of 6−8% forms a Bose-Einstein Condensate (BEC),

even at zero temperature [23]. As a result, a detailed
quantum mechanical understanding of molecular impu-
rities in helium requires first-principle approaches based
on extensive numerical simulations [7]. During last years,
several numerical studies, based mainly on path-integral,
variational, and diffusion quantum Monte-Carlo (MC),
have been performed for molecules embedded in finite-
size Hen clusters with n . 100 [22, 24–46].

In this Letter we show that such an involved many-
particle problem simplifies tremendously, if one assumes
that molecules in helium droplets form angulons – re-
cently introduced quasiparticles consisting of a quantum
rotor dressed by a field of many-body excitations [47–
54]. The angulon theory is inherently many-body and
describes interactions between a molecule and an infinite
number of helium atoms. Nevertheless, it still allows to
derive the effective molecular rotational constants as sim-
ple analytic solutions of a microscopic Hamiltonian, and
assign them a transparent physical interpretation. More-
over, the resulting agreement of the angulon theory with
experiment provides a strong evidence for the angulon
formation inside helium droplets.

We start from introducing the angulon Hamiltonian,
which describes interactions of a rotating molecule with
a bosonic bath [47]:

Ĥ = BĴ2 +
∑
kλµ

ωk b̂
†
kλµb̂kλµ

+
∑
kλµ

√
4π

2λ+ 1
Uλ(k) [Y ∗λµ(θ̂, φ̂)b̂†kλµ + Yλµ(θ̂, φ̂)b̂kλµ],

(1)

where Yλµ(θ̂, φ̂) are spherical harmonics [55],
∑
k ≡

∫
dk,

and ~ ≡ 1. The first term of Eq. (1) corresponds to the
rotational kinetic energy of the molecule, with Ĵ the an-
gular momentum operator. B = 1/(2I) is the molecular
rotational constant, where I is the molecular moment of
inertia. While the first term of Eq. (1) describes rota-
tions of a linear rigid rotor, one can use it to describe an
average kinetic energy of more complex molecules, such



as symmetric an asymmetric tops [56, 57], aiming to ob-
tain an average renormalization of their rotational con-
stants. Thus, the bare eigenstates of the impurity are
given by the (2L+ 1)-fold degenerate levels |L,M〉 with
energies EL = BL(L + 1), where L is the angular mo-
mentum quantum number, and M its projection on the
laboratory-frame z-axis. The second term of the Hamil-
tonian (1) represents the kinetic energy of the superfluid
excitations (such as phonons and rotons), as given by the
dispersion relation ωk. Here, the operators b̂†kλµ (b̂kλµ)
are creating (annihilating) a bath excitation with linear
momentum k = |k|, the angular momentum λ, and its
projection µ, onto the z-axis. These operators can be
obtained from the spherical-harmonic expansion of the
usual creation/annihilation operators, b̂†k and b̂k, defined
in Cartesian space, see Refs. [47–49] for details.

The last term of the angulon Hamiltonian (1) describes
the interaction between the molecular impurity and the
superfluid, where the coupling constants Uλ(k) are pro-
portional to the Legendre moments of the molecule–
Helium potential energy surface (PES) in Fourier space.
Note that the impurity-bath coupling explicitly depends
on molecular angle operators, (θ̂, φ̂), which makes Eq. (1)
substantially different from, e.g., the Bose-polaron [16]
or the spin-boson [58] models. The Hamiltonian (1) was
originally derived to describe an ultracold molecule in-
teracting with a dilute BEC, where the coupling con-
stants Uλ(k) assume a simple analytic form [47, 49]. In
order to reproduce experimental data for a dense super-
fluid of 4He, however, we will approach Eq. (1) from a
phenomenological perspective, by analogy with effective
field theories of nuclear [59] and condensed matter [60]
physics.

Namely, we use a simple, one-parameter model to ex-
tract Uλ(k) from the ab initio PES calculations available
in the literature. First, we note that broadening of the
spectral lines in superfluid helium [61] and solid para-
H2 [62] is dominated by rotational dephasing as opposed
to decay. Therefore, we can assume that Uλ’s with even λ
play the main role, since they can lead to boson scatter-
ing which preserves molecular angular momentum. Fur-
thermore, since for most molecules, the λ = 2 channel is
dominant [63], for the sake of simplicity we neglect the
rest of Uλ terms.

Second, we assume that the coupling constant in the
λ = 2 channel can be approximated as:

U2(k) = ∆f(k) (2)

Here, the form-factor f(k) is considered to be the same
for all the molecular species, while the anisotropy pa-
rameter ∆ depends on a particular molecule. Thus, the
strength of the molecule-superfluid interactions can be
quantified by the dimensionless parameter,

γ = B/∆, (3)

and the species with γ < 1 and γ > 1 belong to the
strong-coupling and weak-coupling regimes, respectively.

We evaluate the anisotropy parameter ∆ as:

∆ =
|V ‖eff − V ⊥eff|

2

√
5

4π
, (4)

where V
‖
eff and V ⊥eff are the effective molecule-helium

interactions, derived from the ab initio PES calcula-
tions [24, 64–84] as follows [85]. For linear molecules,
V
‖
eff and V ⊥eff correspond to the effective molecule-helium

interactions in the linear and T-shaped geometries, re-
spectively. In most cases, the values of Veff were set to
the average depths of the minima/saddle points in the
corresponding configurations. If, for one of the config-
urations the PES was purely repulsive, the correspond-
ing Veff was set to zero, to reflect the fact that the he-
lium density vanishes in this region. For symmetric and
asymmetric tops (CH3, NH3, H2O), V ‖eff was evaluated
along the main molecular symmetry axis, while V ⊥eff along
the direction perpendicular to it, laying within the mir-
ror symmetry plane of the system. For the spherical-
top molecules (SF6, CH4), ∆ was evaluated as an aver-
age anisotropy of PES minima which are not symmetry
equivalent. In this case, |V ‖eff−V ⊥eff| in Eq. (4) was replaced
by
∑
i 6=j |V

(i)
eff − V

(j)
eff |, where i, j label all non-equivalent

minima of the PES [85].
We would like to emphasise that we are quite aware

of the fact that such a one-parameter model provides a
very rough approximation to the two-body interaction
potential. However, as we can see below, it suffices to
obtain a good agreement with experiment.

For molecules in helium droplets, the low-energy ro-
tational spectrum is usually approximated as EL ≈
B∗L(L + 1), where B∗ is the effective rotational con-
stant [6]. Let us first derive B∗ from Eq. (1) in the
strongly-interacting regime, γ � 1. Getting insight into
this regime is inherently challenging, since it involves cou-
pling molecular rotational angular momentum to angular
momenta of, in principle, an infinite number of superfluid
excitations. However, the solution can be drastically sim-
plified by using a canonical transformation recently intro-
duced by Schmidt and Lemeshko [48]:

Ŝ = e−iφ̂⊗Λ̂ze−iθ̂⊗Λ̂ye−iγ̂⊗Λ̂z (5)

Here (φ̂, θ̂, γ̂) are the angle operators which act in the
Hilbert space of the molecular rotor, and

Λ̂ =
∑
kλµν

b̂†kλµσ
λ
µν b̂kλν (6)

is the total angular momentum operator of the superfluid
excitations, acting in their corresponding Hilbert space.
The matrices σλ ≡ {σλ−1, σ

λ
0 , σ

λ
+1} fulfill the SO(3) alge-

bra in the representation of angular momentum λ. Thus,
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the transformation operator of Eq. (5) transfers the su-
perfluid degrees of freedom into the frame co-rotating
along with the molecule.

The transformation (5) brings the Hamiltonian (1) to
the following form [48]:

Ĥ ≡ Ŝ−1ĤŜ = B(L̂− Λ̂)2 +
∑
kλµ

ωk b̂
†
kλµb̂kλµ

+
∑
kλ

Uλ(k)
[
b̂†kλ0 + b̂kλ0

]
(7)

where L̂ = Ĵ + Λ̂ is the total angular momentum of the
system, which acts in the rotating frame of the impu-
rity and therefore obeys anomalous commutation rela-
tions [48, 86, 87].

In the limit of γ → 0, the transformed Hamiltonian (7)
can be diagonalized exactly, with the ground state for
each |LM〉 given by:

|ψLM 〉 = e
∑
kλ

Uλ(k)

ωk
(b̂kλ0−b̂†kλ0) |0〉 |LM〉 (8)

Eqs. (7) and (8) provide a transparent physical inter-
pretation of molecular interactions with a superfluid. For
a slowly-rotating molecule, the superfluid coherent state
of Eq. (8) does not change upon molecular rotation. In
a way, it can be thought of as a quantum formulation
of the ‘nonsuperfluid helium shell’ which rotates along
with the molecule [6, 7, 17]. On the other hand, the ef-
fective molecular angular momentum, cf. the first term
of Eq. (7), is given by the difference between the total
angular momentum of the system, L̂, and the superfluid
angular momentum, Λ̂. Thus, the energy of a state with
a given total angular momentum L is lower in the pres-
ence of a superfluid (Λ̂ 6= 0) compared to a free molecule
(Λ̂ = 0), which leads to an effective renormalization of
the rotational constant.

In the strong-coupling limit, the angular momentum
of the superfluid is given by:

〈Λ̂2〉 ≡ 〈ψLM | Λ̂2 |ψLM 〉 =
∑
kλ

λ(λ+ 1)
U2
λ(k)

ω2
k

(9)

In the first order, we can assume that Λ̂ ↑↑ L̂, i.e.
Λ̂ = α(L)L̂, where the proportionality constant can be
calculated as α2(L) = 〈Λ̂2〉/L(L+1), with 〈Λ̂2〉 given by
Eq. (9). Since in experiment the value of B∗ is usually
determined from the splitting between the two lowest ro-
tational states [6], we evaluate it from the first term of
Eq. (7) for L = 1:

B∗SC
B

= (1− η ∆)2, (10)

where η ≡ α(1)/∆ =
(
3
∑
k f

2(k)/ω2
k

)1/2 is the only phe-
nomenological parameter of the strong-coupling theory,
which is obtained by fitting to the experimental data [85].
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FIG. 1. Renormalization of the molecular rotational constant,
B∗/B, as a function of the coupling parameter γ. Experimen-
tal data from Refs. [17, 26, 34, 35, 43, 44, 54, 88–101] (empty
squares) is compared with the angulon theory in the strong-
coupling regime, Eq. (10) with η = [0.060 ± 0.003]/cm−1

(red circles), and weak-coupling regime, Eq. (12) with ξ =
[0.0092 ± 0.0028]/cm−1 (blue triangles). Green crosses show
the intermediate-coupling interpolation between the strong-
and weak-coupling theories.

Figs. 1(a) and (b) show the comparison of Eq. (10)
(red circles) with experiment (empty squares). We see
that a good agreement with experiment is achieved for
most molecules with γ < 1: SF6, CS2, HCCCN, OCS,
N2O, CO2, CO, and NO. For I2, the model overestimates
the value of B∗/B compared to the MC result [54, 88]
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by about 20%. It is worth noting that the calculations of
impulsive alignment for I2 in helium droplets performed
with the MC value of B∗/B = 0.6 predict a first revival
later than observed in experiment [54], which signals that
the experimental value of B∗/B might be larger than 0.6.

For C2H2, DCN and HCN, see Fig. 1(b), the dis-
agreement with experiment is substantially larger. This
fact might be due to the interplay between phonon
and roton excitations in this region of rotational con-
stants [34, 35, 43], which can potentially lead to a non-
trivial dependence of the parameter η on B and ∆. We
note that for these three species classical hydrodynam-
ics calculations lead to an underestimated B∗/B ratio
as well [18, 19]. For LiH, Fig. 1(c), strong renormaliza-
tion of the rotational constant was previously predicted
using path-integral MC simulations [44]. Here, due to
a pronounced anisotropy of the He–LiH PES [75], the
strong-coupling angulon theory predicts 〈Λ̂〉 > L, which
indicates the breakdown of the employed approximations.
We attribute it to the fact that the PES features strong
U1(k) components which lead to processes involving si-
multaneous absorption/emission of two phonons with
λ = 1, preserving the molecular angular momentum.
The latter are not accounted for by the present theory.
Nevertheless, Eq. (10) predicts a strong decrease of the
LiH rotational constant in helium, which is in fair agree-
ment with predictions of Ref. [44]. For light molecules of
Fig. 1(c), the results of the strong-coupling theory sub-
stantially deviate from experiment and are therefore not
shown.

Now let us consider the regime of weak coupling, γ > 1.
There, one can obtain the energies of molecular states
in helium using second-order perturbation theory on the
Hamiltonian (1):

EL = BL(L+ 1)−
∑
kλL′

Uλ(k)2
[
CL

′0
L0,λ0

]2
BL′(L′ + 1)−BL(L+ 1) + ωk

(11)
where CL

′0
L0,λ0 is the Clebsch-Gordan coefficient [55]. The

second term of Eq. (11) provides a shift which depends
on the molecular rotational state, L, and therefore leads
to renormalization of the rotational constant. It is inter-
esting to note that the process described by Eq. (11) –
differential shifts of the molecular rotational levels due to
virtual phonon absorption – represents an exact analogue
of the Lamb shift in quantum electrodynamics, which is
induced by virtual photon excitations [102, 103].

Taking into account the dominant processes with L =
L′ in Eq. (11), we obtain:

B∗WC
B

= 1− ξ∆2

B
, (12)

where ξ =
∑
k f

2(k)/(5ωk) is the only free parameter
of the weak-coupling theory, obtained by fitting to the
experimental data [85].

Fig. 1(c) compares Eq. (12) (blue triangles) with ex-
perimental data for light molecules. One can see that an
agreement within 2% is achieved for all the considered
species: CH4, CH3, NH3, HCl, H2O, OH, and HF, which
indicates the applicability of the weak-coupling angulon
theory. We attribute a slightly larger disagreement for
CH4, NH3, and H2O to the approximation to the PES,
Eq. (2). We would like to point out that since the ex-
periments on HCl [94] and OH [96] did not detect any
significant renormalization of the rotational constant, the
corresponding experimental values of B∗/B were set to 1.
While our theory indeed predicts B∗/B ≈ 1 for the case
of OH, we observe B∗/B ≈ 0.98 for HCl, which is quite
close to the corresponding value for HF. Given the simi-
larities between the two species, we hope that this result
will stimulate further measurements of B∗/B for HCl.
For most heavy and medium-mass species, Figs. 1(a) and
(b), the weak coupling theory fails to reproduce experi-
mental data and is therefore not presented.

A peculiar situation occurs for three of the stud-
ied molecules, namely, C2H2, DCN, and HCN. There,
the weak-coupling theory overestimates the B∗/B ra-
tio, while the strong-coupling approach underestimates
it. In principle, in order to obtain a quantitative agree-
ment with experiment for these particular species, a dif-
ferent, intermediate-coupling angulon theory is required.
However, as a rough approximation we can estimate
the intermediate-coupling results by interpolating be-
tween the weak-coupling and strong coupling theories as
B∗IC = (B∗SC +B∗WC)/2. The values of B∗IC/B are shown
in Fig. 1(b) by green crosses and are seen to provide a
good agreement with experiment.

In addition to B-renormalization, previous experi-
ments reported a significant increase in the centrifugal
distortion constants, D, compared to the gas phase, ob-
taining e.g. D = 3.7 · 10−5 cm−1 for SF6 [100], D =
1.6·10−4 cm−1 for HCCCN [71], and D = 3.8·10−4 cm−1

for OCS [17]. Such a distortion comes from the coupling
between the angular momenta L̂ and Λ̂ in Eq. (7) [20].
In order to obtain accurate values for D, a more involved,
all-coupling angulon theory is required. Here we perform
a rough estimate, based on second-order perturbation
theory, which gives D ∼ γ2/(5ξ) [85]. For the molecules
mentioned above, we obtain D ∼ 4 · 10−3, 1 · 10−2, and
2·10−2 cm−1, respectively. Although this estimate signif-
icantly exceeds the measured values, the drastic increase
of D in helium, as well as its qualitative change from
molecule to molecule are in agreement with experiment.

In summary, we have demonstrated that the angu-
lon theory is able to reproduce experimental data on
the renormalization of rotational constants in super-
fluid 4He for 25 different molecules, based on only two
phenomenological parameters. It has been shown that
in the strong-coupling regime (mostly taking place for
heavy and medium-mass molecules) the renormalization
of molecular moments of inertia occurs due to a macro-
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scopic deformation of the superfluid which leads to re-
distribution of angular momentum between the molecule
and excitations in helium. In the weak-coupling regime
(applicable to lighter species), the change inB takes place
due to a rotational Lamb shift induced by virtual single-
phonon excitations.

These results provide strong evidence that molecules
immersed in superfluid 4He indeed form the angulon
quasiparticles, and open the door for substantial simplifi-
cations of existing theories. As an example, the angulon
theory is straightforward to apply to large polyatomic
molecules and complexes studied in experiment [6, 7, 9]
and can be extended to time-dependent problems of
molecular dynamics in 4He [54, 104–106]. Moreover,
the applicability of the angulon theory is not limited to
bosonic quantum liquids. Therefore, it can potentially
serve as a building block to understand molecular rota-
tion in other types of solutions and solid-state environ-
ments.

We thank Gary Douberly and Bretislav Friedrich for
insightful discussions and Robert Zillich for sharing un-
published numerical results [88]. This research was sup-
ported in part by the National Science Foundation under
Grant No. NSF PHY11-25915.
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