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We show that a two-level non-Hermitian Hamiltonian with constant off-diagonal exchange ele-
ments can be analyzed exactly when the underlying exceptional point is perfectly encircled in the
complex plane. The state evolution of this system is explicitly obtained in terms of an ensuing
transfer matrix, even for large encirclements, regardless of adiabatic conditions. Our results clearly
explain the direction-dependent nature of this process and why in the adiabatic limit its outcome
is dominated by a specific eigenstate irrespective of initial conditions. Moreover, numerical simula-
tions suggest that this mechanism can still persist in the presence of nonlinear effects. We further
show that this robust process can be harnessed to realize an optical omni-polarizer: a configuration
that generates a desired polarization output regardless of the input polarization state, while from
the opposite direction it always produces the counterpart eigenstate.

PACS numbers: 45.20.Jj, 03.65.Vf, 42.25.Ja

Understanding the dynamics of time-dependent Hamil-
tonians is key in explaining a wide range of processes in
many and diverse physical settings [1]. This ubiquitous
class of problems is of significance since it allows one to
tailor the evolution of a Hamiltonian towards certain out-
comes. If a system is conservative or Hermitian, a cyclic
adiabatic change in a multi-parameter space can often
lead to surprising results such as for example the emer-
gence of gauge-invariant geometric phases, as first shown
by Berry [2]. Of particular interest is the case where
eigenvalue degeneracies are enclosed within the param-
eter loop. In this latter scenario, the geometric phase
is robust against perturbations in the control path since
it is related to the flux generated from the degeneracies
that act as topological sources.

While the Berry phase represents an intuitive and pow-
erful unifying notion, it is by nature based on the adia-
batic theorem [3]. Quite recently, a series of studies have
critically reexamined these aspects in non-Hermitian en-
vironments where it was found that the system behavior
can be significantly modified around degeneracies, bet-
ter known as exceptional points (EPs) [4]. As opposed
to conservative systems, in non-Hermitian arrangements
both the eigenvalues and the corresponding eigenvectors
tend to coalesce at an EP (while unfolding associated
vectors of the Jordan form) [5]. In the last few years a
number of intriguing possibilities have been realized in
structures supporting EPs, including loss-induced trans-
parency [6], single-mode lasing [7], band merging [8],
asymmetric diffraction [9] and unidirectional invisibil-
ity [10], to mention a few. In other studies, the topo-
logical properties associated with the quasi-static encir-
clement of an EP were also investigated. Under such
stationary conditions it was found that the instanta-
neous eigenstates now swap with each other at the end

of the parameter cycle with only one acquiring a geo-
metric phase [11, 12]. This behavior, attributed to the
branch point character of the degeneracy that causes a
gradual transition between the intersecting complex Rie-
mann sheets, was observed in microwave cavities [13] and
exciton-polariton systems [14].

This situation gets drastically altered when a non-
Hermitian Hamiltonian dynamically evolves around an
EP [15]. In this regime, one finds out that adiabatic
predictions tend to break down [16]—a direct byprod-
uct of the fact that the eigenvector basis is skewed and
the eigenvalues themselves are generally complex. In-
deed, even for slow enough cycles, numerical studies re-
veal that only one state dominates the output and what
determines this preferred eigenstate is the sense of rota-
tion in the parameter space [17]. These surprising effects
were recently observed in microwave [18] and optome-
chanical [19] systems. The unexpected transitions dur-
ing such a non-Hermitian evolution have been traced to
the Stokes phenomenon of asymptotics [20] and stability
aspects [21]. However, a full analytical treatment that
systematically explains the chiral nature of the dynam-
ics and why the system’s adiabatic evolution is always
funneled into a preferred eigenstate, is still lacking.

In this Letter, we theoretically analyze the behavior
of two coupled states whose dynamics are governed by a
non-Hermitian Hamiltonian undergoing cyclic variations
in the diagonal terms. The model presented here is read-
ily realizable and even more importantly, allows one to
track the modal populations at all times without impos-
ing restrictions on the degree of adiabaticity or the size of
EP encirclement. Analytical solutions obtained via con-
fluent hypergeometric functions clearly explain the un-
derlying asymmetric conversion into a preferred mode
and the chiral nature of this mechanism is brought to
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FIG. 1. The upper [(a)-(c)] and lower [(d)-(f)] panels rep-
resent eigenvalue trajectories when the EP (marked with ×)
is quasi-statically encircled (a) or excluded (e), respectively,
from the parameter loop. Path directions are shown with ar-
rows in (a) and (d) and black dots depict the starting points.
Solid lines, throughout indicate results for a CW path and
dashed, CCW. The eigenvalues (λ1,2) at the start of the loop
are depicted as green and gray dots in (b) and (e) where their
trajectories are also shown in the corresponding colors. When
the EP is enclosed, the eigenvalues swap with each other—(b)
and when it is excluded, they return to themselves—(e). The
accumulated gain, eQ (see text) corresponding to the different
eigenvalue paths is plotted in (c) and (f) against time τ .

the fore through appropriate transformations. Building
on these findings, we propose a novel on-chip universal
polarizer that can produce in a robust way a single de-
sired output polarization irrespective of the input light
state. When used in reverse, this omni-polarizer instead
produces the complementary polarization eigenstate.
We here consider a system of two coupled entities, con-

stantly exchanging energy in space or time. For example,
in optics, this can be implemented using cavities, waveg-
uides or a series of varying dichroic birefringent plates.
For this 2 × 2 system, the dynamics are governed by
i∂t |ψ(t)〉+H(t) |ψ(t)〉 = 0, where in this Schrödinger de-
scription the time-dependent Hamiltonian H(t) is given
by,

H(t) =

(

−ig̃(t)− δ̃(t) κ

κ ig̃(t) + δ̃(t)

)

, (1)

with the state vector being |ψ(t)〉 = (a(t), b(t))T . Note
that here the non-Hermitain operator H(t) governs the
dynamical evolution of a classical system as opposed to
that of a purely quantum mechanical nature where a Li-
uovillian approach is typically deployed. The time (or
space) varying quantities g̃(t) and δ̃(t) represent gain/loss
and level-detuning between the two coupled elements, re-
spectively. Meanwhile κ denotes the coupling strength
(κ ∈ R). The structure of Eq. (1) implies that one el-
ement [a(t)] is subjected to gain while the other [b(t)]
to an equal amount of loss. For unbalanced gain-loss or
detunings, one can still reduce the description to a trace-
less form via suitable gauge transformations [6, 21]. We

henceforth use scaled variables, (g̃/κ, δ̃/κ, κt) → (g, δ, τ).
In this arrangement, the EP is judiciously established in
parameter space at g = 1 and δ = 0, where the two co-
alescing eigenvalues are λ1,2 = 0 with the corresponding
eigenvectors collapsing to |ψ〉 = (1, i)T . This EP can be
encircled during propagation provided that,

g(τ) = 1− ρ cos(γτ), δ(τ) = ρ sin(γτ), (2)

where γ is a measure of adiabaticity and ρ represents the
radius of the circle (ρ ≤ 1). Equation (2) represents a
clockwise (CW) loop if γ > 0, and a counter-clockwise
(CCW) one if γ < 0. In analogy with previous stud-
ies in PT -symmetric systems, the trajectory is chosen
to start (τ = 0) and end (τ = 2πγ−1 = τend) at the
point that corresponds to the unbroken PT -symmetric
phase [22] to prevent any amplifying or decaying modes
at the input-output interfaces. At these terminal points,
the eigenvectors and eigenvalues are |ψ1,2〉 = (1,±e±iθ)T

and λ1,2 = ± cos θ respectively, where sin θ = (1 − ρ).
The eigenvectors |ψ1,2〉 are the states around which our
discussion is centered. These two vectors are biorthog-

onal with their corresponding left eigenvectors
∣

∣

∣
ψ̃1,2

〉

=

(1,±e∓iθ)T .
It is instructive to first follow the motion of the system

in a quasi-static manner [23] by tracking the instanta-
neous eigenvalues. When the EP is encircled, Fig. 1(a)-
(c), the eigenvalues swap with each other. And for
each direction of encirclement, the path of one of them
stays mostly in the negative imaginary plane. As a re-
sult, the gain-loss component of the dynamical phase
eQ(τ) associated with that specific eigenvalue, where
Q(τ) = −

∫ τ

0 dt
′Im [λ(t′)], leads to a significant ampli-

fication—Fig. 1(c). Consequently, the eigenvector that
corresponds to this eigenvalue eventually dominates. On
the other hand, when the loop excludes the EP, Fig. 1(d)-
(f), the eigenvalues instead return to themselves and none
of them is preferentially amplified at the end of the pa-
rameter excursion. This complex phase and the existence
of non-adiabatic couplings between the eigenstates [16]
eventually leads to a chiral dominance of one eigenstate
over the other.
However, for a dynamical parameter cycle a full under-

standing of this process can only emanate from an ana-
lytical approach. In this regard, following Eq. (2), (1)
can be re-casted into a second order differential equation
for a(τ), e.g.

d2a(τ)

dτ2
−
[

ρ2e2iγτ − ρ(2 + iγ)eiγτ
]

a(τ) = 0, (3)

A similar equation can be obtained for b(τ). We note
that if the solutions corresponding to a CW loop can be
obtained, they can be directly used to describe the CCW
case simply by employing the transformation (a, b) →
(a∗,−b∗) [24]. Equation (3) can be solved by using the
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substitutions η = −2iργ−1eiγτ and a(η) = e−η/2w(η),
which reduce it to the form of a degenerate hypergeo-
metric differential equation,

η
d2w(η)

dη2
+ (1− η)

dw(η)

dη
−
(

i

γ

)

w(η) = 0, (4)

From here one can obtain the general solution, a(η) =
e−η/2 [c1F (i/γ, 1, η) + c2U(i/γ, 1, η)], where F and U
represent confluent hypergeometric functions of the first
and second kind respectively and the coefficients c1,2
depend on initial conditions. We can now express
[

a(τ) b(τ)
]T

in the form of a transfer matrix:

[

a(τ) b(τ)
]T

= σ(τ)M1(τ)M2M3

[

a(0) b(0)
]T
. (5)

Notice that only σ and the matrix M1 are τ -dependent.
The exact solution presented in Eq. (5) is general and
applies regardless of adiabatic or non-adiabatic condi-
tions and pertains to both large and small encirclements

ρ. The scalar σ is given by σ(τ) = iΓ (i/γ) ei
ρ

γ (1+eiγτ ),
where Γ is the gamma function and the matrices are de-
scribed below:

M1(τ) =

[

F (0) U (0)

iF (0) + 2ρ
γ e

iγτF (1) iU (0) − 2ρ
γ e

iγτU (1)

]

,

(6a)

M2 =

[

−ρU (0)
τ=0/γ − 2iρU

(1)
τ=0/γ

2 −U (0)
τ=0

ρF
(0)
τ=0/γ − 2iρF

(1)
τ=0/γ

2 F
(0)
τ=0

]

, (6b)

M3 =

[

1 0
(1 − ρ)/γ i/γ

]

. (6c)

The abbreviated forms of the hypergeometric functions,
F (n) and U (n), represent F (n+ iγ−1, n+1,−2iργ−1eiγτ )
and U(n + iγ−1, n + 1,−2iργ−1eiγτ ), respectively. The
generic function F (p1, p2, x) is single-valued for all com-
plex variables x, where p1,2 are complex parameters. On
the other hand, the principal value of U(p1, p2, x) is de-
fined in the interval −π < arg(x) ≤ π. In the case
at hand, starting from −0.5π, the relevant argument,
arg(−2iργ−1eiγτ ), reaches π when τ = 1.5πγ−1. Out-
side this range, i.e. for τ ∈ [1.5πγ−1, 2πγ−1], one has to
use a connection formula according to [25],

U(p1, p2, x) =
Γ(p2 − p1)

eiπp1

[

F (p1, p2, x)

Γ(p2)
−

e−iπ(p2−p1)

Γ(p1)
exU(p2 − p1, p2, e

−iπx)

]

, (7)

By using the results of Eqs. (5-7), the intensity evolution
(|a|2, |b|2) in the two coupled entities is shown in Fig. 2
when γ = 0.4 and ρ = 1, i.e. θ = 0. Figures 2(a)-
(c) depict the CW case whereas 2(d)-(f) show similar
results for a CCW scenario. By monitoring both the
real and imaginary components of the modal fields, one

(a) (b)

(d) (e)

(c)

(f)

FIG. 2. Intensity evolutions (|a(τ )|2-green, |b(τ )|2-gray) for
a CW loop are shown in (a), normalized with respect to the
maximum value Imax. The real (orange) and imaginary (blue)
parts of the ratio χ(τ ) = b(τ )/a(τ ) are depicted in (b) and
(c). Dashed lines correspond to the input |ψ1〉 and solid to
|ψ2〉. The same scenario for a CCW parameter loop is shown
in (d)-(f). At the end of the excursion (τ = 2πγ−1), in the
CW case, Re[χ→ 1] and Im[χ→ 0] for both local eigenvector
inputs, while in the CCW case Re[χ→ −1] and Im[χ → 0].

finds out that both local eigenvectors |ψ1,2〉 at τ = 0
are eventually transformed at the end of the cycle to
|ψ(τend)〉 ∝ |ψ1〉 = (1, eiθ)T if the loop is performed in a
CW fashion—Figs. 2(b) and 2(c). Of course this is also
true for any linear combination of the two eigenvectors
at the input. Conversely, if the encirclement is carried
out in a CCW manner, |ψ(τend)〉 ∝ |ψ2〉 = (1,−e−iθ)T

for any input state—Figs. 2(e) and 2(f). To understand
this chiral mode preference mechanism, we take a closer
look at the elements mij of the transfer matrix M(τ) =
M1(τ)M2M3 by considering the complex ratio χ(τ) =
b(τ)/a(τ).

χ(τ) =
m21a(0) +m22b(0)

m11a(0) +m12b(0)
(8)

The aforementioned mode-conversion is evidently only
possible under adiabatic conditions, γ ≪ 1. In this
regime, one finds a very specific proportionality fac-
tor between pairs of mij . Based on analytic continu-
ation at τ = τend, the asymptotic behavior of the ma-
trix elements leads to the following important relation,

m21/m11 = m22/m12 = i + (2ρF
(1)
τ=0)/(γF

(0)
τ=0) [24].

Given that the terms iγ−1 and −2iργ−1 are both large
for γ ≪ 1, we now use the asymptotic expansion of
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FIG. 3. (a) A possible realization of an omni-polarizer is
shown that highlights the variations in the width—w (sinu-
soidal) and pumping—P (strongest in the center). Direction-
dependent polarization conversions are also schematically il-
lustrated with green arrow-heads. (b) To limit the required
maximum amplification, the parameter loop around the EP
(×) is here chosen to be skewed. Detuning is given by δ
and ∆g represents the difference between TE and TM modal
gains, i.e. ∆g = (gx−gy)/2. (c) A cross-section at z = 0, L/2
and L (L—length of the device) is shown where the dimen-
sions are (h,w, t) = (0.8, 1.42, 0.1) µm and θ = 70◦. In this
system h, t and θ are kept constant throughout, while w varies
as, e.g. w = 1.42−0.08 sin(2πz/L). The refractive indices for
this GaAs-AlGaAs structure are also shown in (c) at the wave-
length of 800 nm. (d) The two resulting orthogonal eigen-
modes with their electric field polarizations.

F (p1, p2, x) for large p1 [25],

F (p1, p2, x) ∼ Γ(p2)e
x/2(kx)(1−2p2)/4

π−1/2 cos
(

2
√
kx− πp2/2 + π/4

)

, (9)

where k = p2/2 − p1. As a result, F
(1)
τ=0/F

(0)
τ=0 ∼ γ(eiθ −

i)/(2ρ). From here, we finally obtain:

m21

m11

=
m22

m12

∼ eiθ. (10)

Therefore, χ(τend) = b(τend)/a(τend) → eiθ. Equa-
tions (8,10) lie at the heart of our results since they
explain in a comprehensive manner why this mode-
conversion process takes place, with all possible inputs
converging towards |ψ1〉 = (1, eiθ)T . Moreover, given
the fact that (a, b) → (a∗,−b∗) for a counterclockwise
loop, while leaving the matrix elements unchanged, one
directly finds that for a CCW encirclement, χ(τend) →
−e−iθ and as a result all possible inputs are converted
into |ψ2〉 = (1,−e−iθ)T . An interesting subcase of our
results arises when ρ ≪ 1, where the hypergeometric
functions can be accurately represented by Bessel func-
tions [24]. Finally, simulations indicate that the state
conversion mechanism at the end of the loop happens
to be robust even when the contour is considerably de-
formed, as long as the various paths share the same start-
ing point [24].

I

I
-
s

I

I
-
s

S
1

S
2

S
2S

1

S
3

S
3

(a) (b)

(c) (d)

FIG. 4. Evolution of intensities (|Ex|
2—green and

|Ey|
2—gray) for the nonlinear system are shown in (a) and

(b) corresponding to a TE and TM input respectively. The
results are scaled with respect to the saturation intensity (Is)
of the gain medium. Polarization dynamics on the Poincaré
sphere corresponding to these two cases are depicted in (c)
and (d) where yellow dots indicate the input light state and
crosses that of the output.

In many applications it is often required to control the
polarization state at the output of a system [26, 27]. In
particular, significant effort has been invested in over-
coming the polarization dependent performance of com-
ponents such as optical amplifiers and wavelength filters.
Based on the results presented earlier, we here propose a
single channel omni-polarizer. This structure is expected
to transform any input into a desired state of polariza-
tion (|ψ1〉) when light traverses it in one direction. Con-
versely, in the opposite direction, any arbitrary input is
mapped into the biorthogonal vector (|ψ2〉). A possible
realization is shown in Fig. 3(a). In this case, the slanted
side-wall allows for coupling (κ) between the TE (x̂) and
TM (ŷ) polarizations [28] while variations in the width of
the waveguide w can introduce a variable birefringence.
To achieve the aforementioned conversion of any input
to a single polarization, w and the amount of carrier in-
jection P (optical or electrical) need to be varied along
propagation so as to encircle the EP, as shown for exam-
ple in Fig. 3(b). Note that w and P are directly related
to δ and ∆g respectively. The TE and TM polarization
gains vary linearly with P , only the latter being less by
a factor of ε, typically ε ∼ 1/3. A cross-sectional view
of this structure is shown in Fig. 3(c) where the birefrin-
gence (δ) is negligible and the eigenpolarizations (±45◦)
are |ψ1,2〉 = (1,±1)T—Fig. 3(d).

In the design presented, κ remains nearly constant at
κ ∼ 1.4 × 103 m−1. The corresponding value of maxi-
mum gain (intensity-wise) required is 100 cm−1 near the
middle of the device. Meanwhile w needs to be gradually
varied according to w = 1.42 → 1.34 → 1.50 → 1.42 µm,
as schematically shown in Fig. 3(a). Here the nonlinear
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evolution dynamics are given by [24, 29]:

dEx

dz
=

gxEx

1 + |Ex|2 + ε|Ey|2
− (α+ iδ)Ex + iκEy, (11a)

dEy

dz
=

εgxEy

1 + |Ex|2 + ε|Ey|2
− (α− iδ)Ey + iκEx, (11b)

where α ∼ 0.9κ is a linear absorption loss, γ is here
chosen to be γ = 0.4 corresponding to a device length of
L = 1.1 cm. For a CW loop shown in Fig. 3(b), gain and
detunings are dynamically varied as gx = 3.6κ sin(γκz/2)
and δ = κ sin(γκz) for κz ∈ [0, 2πγ−1]. The ensuing evo-
lution of intensities |Ex|2 and |Ey|2, scaled with the sat-
uration level [24], is shown in Fig. 4(a) for a TE and in
Fig. 4(b) for a TM input. Unlike the linear case studied
before, here the intensities evolve within reasonable lim-
its due to saturation effects. The nature of the underlying
polarization conversion is revealed in Figs. 4(c) and 4(d)
where the corresponding field trajectories are plotted on
the Poincaré sphere. Clearly, both TE and TM polariza-
tions end up in the same eigenstate, i.e. +45◦ linearly
polarized. For a CCW traversal, viz. δ = −κ sin(γκz),
the output polarization was found to be −45◦. Our re-
sults indicate that despite the presence of nonlinearities,
the chiral mechanism of mode-preference still persists.
In other words, the topological nature of EP encircling
in this omni-polarizer makes it highly robust.
In conclusion we have provided an analytic explana-

tion of the chiral mode-conversion mechanism that takes
place during dynamic encirclement of an EP. We demon-
strated that this effect can be exploited to implement an
optical omni-polarizer that exhibits counter-intuitive po-
larization properties. Finally, this EP based mechanism
could find manifestations in various settings beyond op-
tics, e.g. coherent population control between coupled
energy levels and other non-Hermitian acoustic [30] and
electronic [31] systems.
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