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The cross section for the process e+e− → π+π−J/ψ is measured precisely at center-of-mass energies from

3.77 to 4.60 GeV using 9 fb−1 of data collected with the BESIII detector operating at the BEPCII storage ring.

Two resonant structures are observed in a fit to the cross section. The first resonance has a mass of (4222.0 ±
3.1±1.4) MeV/c2 and a width of (44.1±4.3±2.0) MeV, while the second one has a mass of (4320.0±10.4±
7.0) MeV/c2 and a width of (101.4+25.3

−19.7 ± 10.2) MeV, where the first errors are statistical and second ones

are systematic. The first resonance agrees with the Y (4260) resonance reported by previous experiments. The

precision of its resonant parameters is improved significantly. The second resonance is observed in e+e− →
π+π−J/ψ for the first time. The statistical significance of this resonance is estimated to be larger than 7.6σ.

The mass and width of the second resonance agree with the Y (4360) resonance reported by the BABAR and

Belle experiments within errors. Finally, the Y (4008) resonance previously observed by the Belle experiment

is not confirmed in the description of the BESIII data.

PACS numbers: 14.40.Rt, 13.25.Gv, 14.40.Pq, 13.66.Bc

The process e+e− → π+π−J/ψ at center-of-mass (c.m.)

energies between 3.8 and 5.0 GeV was first studied by the

BABAR experiment using an initial-state-radiation (ISR) tech-

nique [1], and a new structure, the Y (4260), was reported with

a mass around 4.26 GeV/c2. This observation was immedi-

ately confirmed by the CLEO [2] and Belle experiments [3] in

the same process. In addition, the Belle experiment reported

an accumulation of events at around 4 GeV, which was called

Y (4008) later. Although the Y (4008) state is still controver-

sial — a new measurement by the BABAR experiment does not

confirm it [4], while an updated measurement by the Belle ex-

periment still supports its existence [5] — the observation of

the Y -states has stimulated substantial theoretical discussions

on their nature [6, 7].

Being produced in e+e− annihilation, the Y -states have

quantum numbers JPC = 1−−. However, unlike the known

1−− charmonium states in the same mass range, such as

ψ(4040), ψ(4160) and ψ(4415) [8], which decay predomi-

nantly into open charm final states [D(∗)D̄(∗)], the Y states

show strong coupling to hidden-charm final states [9]. Fur-

thermore, the observation of the states Y (4360) and Y (4660)
in e+e− → π+π−ψ(2S) [10], together with the newly ob-

served resonant structures in e+e− → ωχc0 [11] and e+e− →
π+π−hc [12], overpopulate the vector charmonium spectrum

predicted by potential models [13]. All of this indicates that

the Y states may not be conventional charmonium states, and

they are good candidates for new types of exotic particles,

such as hybrids, tetraquarks, or meson molecules [6, 7].

The Y (4260) state was once considered a good hybrid can-

didate [14] since its mass is close to the value predicted by

the flux tube model for the lightest hybrid charmonium [15].

Recent lattice calculations also show a 1−− hybrid char-

monium could have a mass of 4285 ± 14 MeV/c2 [16] or

4.33(2) GeV/c2 [17]. Meanwhile, the diquark-antidiquark

tetraquark model predicts a wide spectrum of states which can

also accommodate the Y (4260) [18]. Moreover, the mass of

Y (4260) is near the mass threshold ofD∗+
s D∗−

s , D̄D1,D0D̄
∗

and f0(980)J/ψ, and Y (4260) was supposed to be a meson

molecule candidate of these meson pairs [19, 20]. A recent

observation of a charged charmoniumlike state Zc(3900) by

BESIII [21], Belle [5] and with CLEO data [22] seems fa-

vor the D̄D1 meson pair option [19]. Another possible in-

terpretation describes the Y (4260) as a heavy charmonium

(J/ψ) being bound inside light hadronic matter — hadro-

charmonium [23]. To better identify the nature of the Y
states and distinguish various models, more precise experi-

mental measurements, including the production cross section,

the mass and width of the Y states, are essential.

In this Letter, we report a precise measurement of the

e+e− → π+π−J/ψ cross section at e+e− c.m. energies from

3.77 to 4.60 GeV, using a data sample with an integrated lu-

minosity of 9.05 fb−1 [24] collected with the BESIII detector

operating at the BEPCII storage ring [25]. The J/ψ candidate

is reconstructed with its leptonic decay modes (µ+µ− and

e+e−). The data sample used in this measurement includes

two independent data sets. A high luminosity data set (dubbed

“XYZ data”) contains more than 40 pb−1 at each c.m. energy

with a total integrated luminosity of 8.2 fb−1, which domi-
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nates the precision of this measurement; and a low luminosity

data set (dubbed “Scan data”) contains about 7–9 pb−1 at each

c.m. energy with a total integrated luminosity of 0.8 fb−1.

The integrated luminosities are measured with Bhabha events

with an uncertainty of 1% [24]. The c.m. energy of each data

set is measured using dimuon events, with an uncertainty of

±0.8 MeV [26].

The BESIII detector is described in detail elsewhere [25].

The GEANT4-based [27] Monte Carlo (MC) simulation soft-

ware package BOOST [28], which includes the geometric de-

scription of the BESIII detector and the detector response, is

used to optimize event selection criteria, determine the detec-

tion efficiency, and estimate the backgrounds. For the sig-

nal process, we generate 60,000 e+e− → π+π−J/ψ events

at each c.m. energy of the “XYZ data”, and an extrapola-

tion is performed to the “Scan data” with nearby c.m. ener-

gies. At e+e− c.m. energies between 4.189 and 4.358 GeV,

the signal events are generated according to the Dalitz plot

distributions obtained from the data set at corresponding

c.m. energy, since there is significant Zc(3900) produc-

tion [5, 21, 22]. At other c.m. energies, signal events

are generated using an EVTGEN [29] phase space model.

The J/ψ decays into µ+µ− and e+e− with same branch-

ing fractions [8]. The ISR is simulated with KKMC [30],

and the maximum ISR photon energy is set to correspond

to a 3.72 GeV/c2 production threshold of the π+π−J/ψ
system. Final-state-radiation (FSR) is simulated with PHO-

TOS [31]. Possible background contributions are estimated

with KKMC-generated inclusive MC samples [e+e− →
e+e−, µ+µ−, τ+τ−, γγ, γISRJ/ψ, γISRψ(2S), and qq̄
with q = u, d, s, c] with comparable integrated luminosities

to the “XYZ data”.

Events with four charged tracks with zero net charge are

selected. For each charged track, the polar angle in the drift

chamber must satisfy | cos θ| < 0.93, and the point of clos-

est approach to the e+e− interaction point must be within

±10 cm in the beam direction and within 1 cm in the plane

perpendicular to the beam direction. Taking advantage of the

fact that pions and leptons are kinematically well separated

in the signal decay, charged tracks with momenta larger than

1.06 GeV/c in the laboratory frame are assumed to be lep-

tons, and the others are assumed to be pions. We use the en-

ergy deposited in the electromagnetic calorimeter (EMC) to

separate electrons from muons. For both muon candidates,

the deposited energy in the EMC is required to be less than

0.35 GeV, while for both electrons, it is required to be larger

than 1.1 GeV. To avoid systematic errors due to unstable op-

eration, the muon system is not used here. Each event is re-

quired to have one π+π−ℓ+ℓ− (ℓ = e or µ) combination.

To improve the momentum and energy resolution and to

reduce the background, a four-constraint (4C) kinematic fit is

applied to the event with the hypothesis e+e− → π+π−ℓ+ℓ−,

which constrains the total four-momentum of the final state

particles to that of the initial colliding beams. The χ2/ndf of

the kinematic fit is required to be less than 60/4.

To suppress radiative Bhabha and radiative dimuon

(e+e− → γe+e−/γµ+µ−) backgrounds associated with

photon conversion to an e+e− pair which subsequently is

misidentified as a π+π− pair, the cosine of the opening an-

gle of the pion-pair (cos θπ+π−) candidates is required to be

less than 0.98 both for J/ψ → µ+µ− and e+e− events. For

J/ψ → e+e− events, since there are more abundant pho-

ton sources from radiative Bhabha events, we further require

the cosine of the opening angles of both pion-electron pairs

(cos θπ±e∓ ) to be less than 0.98. These requirements remove

almost all of the Bhabha and dimuon background events, with

an efficiency loss of less than 1% for signal events.

After imposing the above selection criteria, a clear J/ψ sig-

nal is observed in the invariant mass distribution of the lepton

pairs [M(ℓ+ℓ−)]. The mass resolution of the M(ℓ+ℓ−) dis-

tribution is estimated to be (3.7 ± 0.2) MeV/c2 for J/ψ →
µ+µ−, and (3.9 ± 0.3) MeV/c2 for J/ψ → e+e− in data for

the range of c.m. energies investigated in this study. The J/ψ
mass window is defined as 3.08 < M(ℓ+ℓ−) < 3.12 GeV/c2.

In order to estimate the non-J/ψ backgrounds contribution,

we also define the J/ψ mass sideband as 3.00 < M(ℓ+ℓ−) <
3.06 GeV/c2 and 3.14 < M(ℓ+ℓ−) < 3.20 GeV/c2, which

is three times as wide as the signal region. The dominant

background comes from e+e− → qq̄ (q = u, d, s) pro-

cesses, such as e+e− → π+π−π+π−. Since qq̄ events form

a smooth distribution in the J/ψ signal region, their contri-

bution is estimated by the J/ψ mass sideband. Contribu-

tions from backgrounds related with charm quark production,

such as e+e− → ηJ/ψ [32], D(∗) ¯D(∗) and other open-charm

mesons, are estimated to be negligible according to MC sim-

ulation studies.

In order to determine the signal yields, we make use of both

fitting and counting methods on the M(ℓ+ℓ−) distribution. In

the “XYZ data”, each data set contains many signal events,

and an unbinned maximum likelihood fit to theM(ℓ+ℓ−) dis-

tribution is performed. We use a MC simulated signal shape

convolved with a Gaussian function (with standard deviation

1.9 MeV, which represents the resolution difference between

the data and the MC simulation) as the signal probability den-

sity function (PDF), and a linear term for the background. For

the “Scan data”, due to the low statistics, we directly count

the number of events in the J/ψ signal region and that of the

normalized background events in the J/ψ mass sideband, and

take the difference as the signal yields.

The cross section of e+e− → π+π−J/ψ at a certain e+e−

c.m. energy
√
s is calculated using

σ(
√
s) =

N sig

Lint(1 + δ)ǫB , (1)

where N sig is the number of signal events, Lint is the inte-

grated luminosity of data, 1 + δ is the ISR correction factor,

ǫ is the detection efficiency, and B is the branching fraction

of J/ψ → ℓ+ℓ− [8]. The ISR correction factor is calculated

using the KKMC [30] program. To get the correct ISR photon

energy distribution, we use the
√
s dependent cross section

line shape of the e+e− → π+π−J/ψ process, i.e. σ(
√
s) to

replace the default one of KKMC. Since σ(
√
s) is what we

measure in this study, the ISR correction procedure needs to
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be iterated, and the final results are obtained when the iteration

converges. Figure 1 shows the measured cross section σ(
√
s)

from both the “XYZ data” and “Scan data” (Numerical results

are listed in the supplemental material [33]).

To study the possible resonant structures in the e+e− →
π+π−J/ψ process, a binned maximum likelihood fit is per-

formed simultaneously to the measured cross section σ(
√
s)

of the “XYZ data” with Gaussian uncertainties and the “Scan

data” with Poisson uncertainties. The PDF is parameterized

as the coherent sum of three Breit-Wigner (BW) functions,

together with an incoherent ψ(3770) component which ac-

counts for the decay of ψ(3770) → π+π−J/ψ, with ψ(3770)
mass and width fixed to PDG [8] values. Due to the lack of

data near the ψ(3770) resonance, it is impossible to deter-

mine the relative phase between the ψ(3770) amplitude and

the other amplitudes. The amplitude to describe a resonance

R is written as

A(
√
s) =

M√
s

√
12πΓe+e−ΓtotBR

s−M2 + iMΓtot

√

Φ(
√
s)

Φ(M)
eiφ, (2)

where M , Γtot and Γe+e− are the mass, full width and elec-

tronic width of the resonance R, respectively; BR is the

branching fraction of the decay R → π+π−J/ψ; Φ(
√
s)

is the phase space factor of the three-body decay R →
π+π−J/ψ [8], and φ is the phase of the amplitude. The fit has

four solutions with equally good fit quality [34] and identical

masses and widths of the resonances (listed in Table I), while

the phases and the product of the electronic widths with the

branching fractions are different (listed in Table II). Figure 1

shows the fit results. The resonance R1 has a mass and width

consistent with that of Y (4008) observed by Belle [5] within

1.0σ and 2.9σ, respectively. The resonance R2 has a mass

4222.0 ± 3.1 MeV/c2, which agrees with the average mass,

4251±9 MeV/c2 [8], of the Y (4260) peak [1–5] within 3.0σ.

However, its measured width is much narrower than the aver-

age width, 120±12MeV [8], of the Y (4260). We also observe

a new resonanceR3. The statistical significance of R3 is esti-

mated to be 7.9σ (including systematic uncertainties) by com-

paring the change of ∆(−2 lnL) = 74.9 with and without the

R3 amplitude in the fit, and taking the change of number of

degree of freedom ∆ndf = 4 into account. The fit quality is

estimated using a χ2-test method, with χ2/ndf = 93.6/110.

Fit models taken from previous experiments [1–5] are also in-

vestigated and are ruled out with a confidence level equivalent

to more than 5.4σ.

As an alternative description of the data, we use an ex-

ponential [35] to model the cross section near 4 GeV as in

Ref. [4], instead of the resonanceR1. The fit results are shown

as dashed lines in Fig. 1. This model also describes data very

well. A χ2-test to the fit quality gives χ2/ndf = 93.2/111.

Thus, the existence of a resonance near 4 GeV, such as the res-

onance R1 or the Y (4008) resonance [3], is not necessary to

explain the data. The fit has four solutions with equally good

fit quality [34] and identical masses and widths of the reso-

nances (listed in Table I), while the phases and the product of

the electronic widths with the branching fractions are differ-

ent (listed in Table II). We observe the resonance R2 and the

TABLE I: The measured masses and widths of the resonances from

the fit to the e+e− → π+π−J/ψ cross section with three coherent

Breit-Wigner functions. The numbers in the brackets correspond to

a fit by replacing R1 with an exponential describing the continuum.

The errors are statistical only.

Parameters Fit result

M(R1) 3812.6+61.9
−96.6 (· · · )

Γtot(R1) 476.9+78.4
−64.8 (· · · )

M(R2) 4222.0 ± 3.1 (4220.9 ± 2.9)

Γtot(R2) 44.1 ± 4.3 (44.1 ± 3.8)

M(R3) 4320.0 ± 10.4 (4326.8 ± 10.0)

Γtot(R3) 101.4+25.3
−19.7 (98.2+25.4

−19.6)

resonance R3 again. The statistical significance of resonance

R3 in this model is estimated to be 7.6σ (including system-

atic uncertainties) [∆(−2 lnL) = 70.7, ∆ndf = 4] using the

same method as above.

The systematic uncertainty for the cross section measure-

ment mainly comes from uncertainties in the luminosity, effi-

ciencies, radiative correction, background shape and branch-

ing fraction of J/ψ → ℓ+ℓ−. The integrated luminosities

of all the data sets are measured using large angle Bhabha

scattering events, with an uncertainty of 1% [24]. The un-

certainty in the tracking efficiency for high momentum lep-

tons is 1% per track. Pions have momenta that range from

0.1 to 1.06 GeV/c, and their momentum weighted tracking

efficiency uncertainty is also 1% per track. For the kine-

matic fit, we use a similar method as in Ref. [36] to improve

the agreement of the χ2 distribution between data and MC

simulation, and the systematic uncertainty for the kinematic

fit is estimated to be 0.6% (1.1%) for µ+µ− (e+e−) events.

For the MC simulation of signal events, we use both the

π±Zc(3900)
∓ model [5, 21, 22] and the phase space model

to describe the e+e− → π+π−J/ψ process. The efficiency

difference between these two models is 3.1%, which is taken

as systematic uncertainty due to the decay model.

The efficiency for the other selection criteria, the trigger

simulation, the event start time determination and the FSR

simulation are quite high (> 99%), and their systematic er-

rors are estimated to be less than 1%. In the ISR correc-

tion procedure, we iterate the cross section measurement un-

til (1 + δ)ǫ converges. The convergence criterion is taken as

the systematic uncertainty due to the ISR correction, which is

1%. We obtain the number of signal events by either fitting

or counting events in the M(ℓ+ℓ−) distribution. The back-

ground shape is described by a linear distribution. Varying

the background shape from a linear shape to a second-order

polynomial causes a 1.6% (2.1%) difference for the J/ψ sig-

nal yield for the µ+µ− (e+e−) mode, which is taken as the

systematic uncertainty for background shape. The branching

fraction of J/ψ → ℓ+ℓ− is taken from PDG [8], the errors are

0.6% for both J/ψ decay modes. Assuming all the sources of

systematic uncertainty to be independent, the total systematic

uncertainties are obtained by adding them in quadrature, re-

sulting in 5.7% for the µ+µ− mode, and 5.9% for the e+e−
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FIG. 1: Measured cross section σ(e+e− → π+π−J/ψ) and simultaneous fit to the “XYZ data” (left) and “Scan data” (right) with the coherent

sum of three Breit-Wigner functions (red solid curves) and the coherent sum of an exponential continuum and two Breit-Wigner functions (blue

dashed curves). Dots with error bars are data.

TABLE II: The values of Γe+e−B(R → π+π−J/ψ) (in eV) from a fit to the e+e− → π+π−J/ψ cross section. φ1 and φ2 (in degrees) are

the phase of the resonance R2 and R3, the phase of resonance R1 (or continuum) is set to 0. The numbers in the brackets correspond to the fit

by replacing resonance R1 with an exponential to describe the continuum. The errors are statistical only.

Parameters Solution I Solution II Solution III Solution IV

Γe+e−B[ψ(3770) → π+π−J/ψ] 0.5± 0.1 (0.4± 0.1)

Γe+e−B(R1 → π+π−J/ψ) 8.8+1.5
−2.2 (· · · ) 6.8+1.1

−1.5 (· · · ) 7.2+0.9
−1.5 (· · · ) 5.6+0.6

−1.0 (· · · )

Γe+e−B(R2 → π+π−J/ψ) 13.3 ± 1.4 (12.0 ± 1.0) 9.2± 0.7 (8.9± 0.6) 2.3± 0.6 (2.1 ± 0.4) 1.6± 0.4 (1.5± 0.3)

Γe+e−B(R3 → π+π−J/ψ) 21.1 ± 3.9 (17.9 ± 3.3) 1.7+0.8
−0.6 (1.1+0.5

−0.4) 13.3+2.3
−1.8 (12.4+1.9

−1.7) 1.1+0.4
−0.3 (0.8± 0.3)

φ1 −58± 11 (−33± 8) −116+9
−10 (−81+7

−8) 65+24
−20 (81+16

−14) 8± 13 (33± 9)

φ2 −156± 5 (−132± 3) 68± 24 (107± 20) −115+11
−9 (−95+6

−5) 110± 16 (144± 14)

mode.

In both fit scenarios to the e+e− → π+π−J/ψ cross sec-

tion, we observe the resonance R2 and R3. Since we can not

distinguish the two scenarios from data, we take the differ-

ence in mass and width as the systematic uncertainties, i.e.

1.1 (6.8) MeV/c2 for the mass and 0.0 (3.2) MeV for the

width of R2 (R3). The absolute c.m. energy of all the data

sets were measured with dimuon events, with an uncertainty

of ±0.8 MeV. Such kind of common uncertainty will prop-

agate only to the masses of the resonances with the same

amount, i.e. ±0.8 MeV/c2. In both fits, the ψ(3770) ampli-

tude was added incoherently. The possible interference effect

of ψ(3770) component was investigated by adding it coher-

ently in the fit with various phase. The largest deviation of the

resonant parameters between the fits with and without inter-

ference for the ψ(3770) amplitude are taken as systematic er-

ror, which is 0.3 (1.3) MeV/c2 for the mass, and 2.0 (9.7) MeV

for the width of the R2 (R3) resonance. Assuming all the

systematic uncertainties are independent, we get the total sys-

tematic uncertainties by adding them in quadrature, which is

1.4 (7.0) MeV/c2 for the mass, and 2.0 (10.2) MeV for the

width of R2 (R3), respectively.

In summary, we perform a precise cross section mea-

surement of e+e− → π+π−J/ψ for c.m. energies from√
s = 3.77 to 4.60 GeV. Two resonant structures are ob-

served, one with a mass of (4222.0 ± 3.1 ± 1.4) MeV/c2

and a width of (44.1 ± 4.3 ± 2.0) MeV, and the other with

a mass of (4320.0 ± 10.4 ± 7.0) MeV/c2 and a width of

(101.4+25.3
−19.7 ± 10.2) MeV, where the first errors are statistical

and the second ones are systematic. The first resonance agrees

with the Y (4260) resonance reported by BABAR, CLEO and

Belle [1–5]. However, our measured width is much narrower

than the Y (4260) average width [8] reported by previous ex-

periments. This is thanks to the much more precise data from

BESIII, which results in the observation of the second reso-

nance. The second resonance is observed for the first time in

the process e+e− → π+π−J/ψ. Its statistical significance is

estimated to be larger than 7.6σ. The second resonance has

a mass and width comparable to the Y (4360) resonance re-

ported by Belle and BABAR in e+e− → π+π−ψ(2S) [10]. If

we assume it is the same resonance as the Y (4360), we ob-

serve a new decay channel of Y (4360) → π+π−J/ψ for the

first time. Finally, we can not confirm the existence of the

Y (4008) resonance [3, 5] from our data, since a continuum

term also describes the cross section near 4 GeV equally well.
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