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In this work we investigate a direct relationship between a graph’s topology and the free energy
of a spin system on the graph. We develop a method of separating topological and energetic
contributions to the free energy, and find that considering the topology is sufficient to qualitatively
compare the free energies of different graph systems at high temperature, even when the energetics
are not fully known. This method was applied to the metal lattice system with defects, and we
found that it partially explains why point defects are more stable than high-dimensional defects.
Given the energetics, we can even quantitatively compare free energies of different graph structures
via a closed form of linear graph contributions. The closed form is applied to predict the sequence
space free energy of lattice proteins, which is a key factor determining the designability of a protein
structure.

Over the last thirty years, graph theory has been ap-
plied to the study of various networks, including protein
interaction networks, neural networks, and the World
Wide Web [1–4]. While the interplay between network
structure and dynamics has attracted considerable atten-
tion [5], the equilibrium characteristics of network have
also been studied in various contexts. In this work, we
will focus on a spin model on a graph, which has a wide
range of applications from biochemical and immune net-
work behaviors [6, 7] to social network phenomena [8],
and study an analytical relationship between a system’s
graph topology and its free energy. Many of previous
studies assume either a randomly generated graph [9], or
a random Hamiltonian [10–13]. Instead of assuming a
random variable, we assume a given (and arbitrary) in-
teraction energy matrix over different spin states. This
reduces generality on coupling, but by this we can inves-
tigate any type of graphs, whether dense or sparse.

Consider a simple graph [14] of N nodes. The graph
connectivity is described by the adjacency matrix A,
whose element Aij is 1 when there is a link between
nodes i and j, and Aij = 0 otherwise. Each node is
in one of M possible spin states. The Hamiltonian, H,
is defined as the summation of energetic contributions
over all links, each of whose energy is determined by the
states of its two terminal nodes. Note that orphan nodes
do not contribute energetically, by definition. Now, the
Hamiltonian can be written formally as

H =
1

2

N,N∑
i,j

AijEs(i)s(j), (1)

where E is the energy matrix (whose element can be
positive or negative) and s(i) is the state of node i.
The high-temperature expansion of the partition function
Z(β) =

∑
{s} e

−βH over all possible state configurations
is

Z(β) =
∑
{s}

1− β
∑
{s}

H+
β2

2!

∑
{s}

H2 − · · · . (2)
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FIG. 1: Examples of 3-link multigraphs. a is a parent
graph of c (i.e., c is obtained by a node contraction

operation on a), and b is also a parent graph of c, but
there is no such relationship between a and b.

In the higher-order terms, there are summations of var-
ious products of A and E elements. To systematically vi-
sualize those terms, we introduce a multigraph g (where
multiple links between any pair of nodes are allowed)
with no orphan nodes (see Fig. 1 for examples), and we
use its nodes as dummy variables of the summations. For
each multigraph g, we define two quantities [g] and E(g)
as follows:

[g] =
∑
nodes

n(g)∏
k=1

Alk , (3)

E(g) = M−n(nodes)
∑
nodes

n(g)∏
k=1

Elk , (4)

where lk indicates the link of index k, n(g) is the number
of links in graph g, and n(nodes) is the number of nodes
in graph g. For example, for the graph shown in Fig. 1c,[ ]

=
∑
ijk

AijAijAjk, (5)

E

( )
= M−3

∑
mnp

EmnEmnEnp. (6)

Note that since A is a binary matrix, [g] for a graph g
with multiple links is equal to [g0] where g0 is a simple
graph constructed from g by converting all multiple links
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in g to single links. For example, equation 5 becomes[ ]
=
∑
ijk

A2
ijAjk =

∑
ijk

AijAjk =

[ ]
. (7)

Next, we introduce a special form of graph operation:
node contraction, which merges two different nodes while
preserving the number of links [15]. If a graph h can be
obtained by any number of node contraction operations
on another graph g, we will call h a child graph of g, and
g a parent graph of h. For example, in Fig. 1, graph a is
a parent graph of c, and graph b is also a parent graph of
c, but there is no parent-child relationship between a and
b. Note that [g] represents the total number of unique
subgraphs of type g and of its child types on the given
graph.

Then it can be shown (see Appendix A) that

Z(β) = MN exp

 ∑
connected g

(−β/2)n(g)

n(g)!
H(g)[g]

 , (8)

where the summation is over all possible connected sub-
graphs g. H(g) is defined as

H(g) = K(g)E(g)

+
∑

g′∈P(g)

(−1)m(g,g′)K(g, g′)K(g′)E(g′), (9)

where K(g) is the combinatoric factor to construct graph
g from n(g) links, K(g, g′) is the combinatoric factor
to generate graph g from graph g′ by node contraction,
m(g, g′) is the number of contraction operations required
to construct g from g′, and P(g) is the set containing all
parent graphs of graph g. Finally, the free energy [16] is

F (β) = −NkBT lnM +
∑

connected g

F̃ (g, β), (10)

where

F̃ (g, β) = − 1

β

(−β/2)n(g)

n(g)!
H(g)[g]. (11)

Note that free energy depends only on global properties
of a graph (such as n(g) and [g]). Thus, all graphs with
the same set of global properties share identical F̃ (g, β),
independent of their local connectivity distributions.

One advantage of equations 10 and 11 is that the graph
topology (which determines [g]) is now unlinked from de-
tailed energetics (which determines H(g)). Hence, even
without knowing the exact energy matrix E, it is possi-
ble to compare [g] values from different structures and, in
some cases, we can determine which structure provides
lower free energy of the corresponding spin system. To il-
lustrate this, let us consider two different graph systems,
a chain graph of length N and a star graph with N leaves.
They have the same numbers of nodes and links, but it
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FIG. 2: (a-b) Two different types of defects, drawn by
VESTA 3 [17]. Broken bonds are marked in red. (a)

Diamond structure with a grain boundary indicated by
a red plane. (b) Same structure with a vacancy defect.
(c) Difference between MC free energies of two Si-Ge

alloy lattice systems with different types of defects, as a
function of inverse temperature. Here, the y axis shows
∆F = F (vacancy defect)− F (grain boundary) for the

entire system.

can be shown that [g]chain < [g]star holds in general (see
Appendix D), so at a temperature high enough that, for
the star graph, the infinite sum in equation 10 does not
diverge and if the sum is negative (stable free energy), we
can conclude that the star-graph spin system has lower
free energy than its counterpart on a chain graph. Note
that this qualitative result is independent of the details
of the energy matrix. As a specific example, an Ising
chain system always has higher free energy than an Ising
star at any T > 0 regardless of the details of energetics
(see Appendix D).

A possible application of this general analysis is to
an alloy lattice system with defects. Here we consider
two types of defects: planar defects (i.e., grain bound-
aries) and point defects. We constructed a 3-dimensional
diamond-like lattice structure in 3 × 3 × 3 unit cells
with a periodic boundary condition (216 lattice points).
The first system contains a grain boundary modeled by
a discontinuity on the (001) plane (see Fig. 2a). To sim-
ulate vacancy defects, we constructed a second system
by removing lattice points randomly (see Fig. 2b) until
the number of broken bonds was equal to the number of
bonds broken at the grain boundary in the first system
(the number of remaining bonds = 324). Using a similar
argument as above, it can be analytically shown that [g]
is generally greater for the point vacancy system than for
the grain boundary system.

We carried out a Monte Carlo (MC) simulation to
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FIG. 3: Examples of subgraphs (black) contributing to
the term [g] where g is a 3-link path graph (Fig. 1a) on
the given graph architecture (gray). (b) shows a child

graph of a 3-link path graph (Fig. 1c).

check that the system with point vacancies indeed has
lower free energy than that with a grain boundary. We
considered lattice site occupation with the atom types
s(i) = Si,Ge as the possible states of lattice site i,
and used the interatomic potential developed in previous
works [18, 19]. Assuming equal bond lengths, E(Si,Si) =
−2.17J,E(Ge,Ge) = −1.93J,E(Si,Ge) = −2.04J, where
J is a constant. We tested five different temperatures,
10−1, 10−2, 10−3, 10−4, and 10−5 in units of βJ . We car-
ried out 1,000 independent MC simulations for each tem-
perature, and in each simulation we performed 1.1 mil-
lion MC steps and neglected the first 0.1 million steps to
achieve the system equilibrium (see Fig. S3 for a repre-
sentative trajectory).

Fig. 2c shows the MC free energy difference between
the two systems with different defect types as a func-
tion of βJ . In the high-temperature regime, the con-
stant term and one-link term (proportional to the num-
ber of links) in equation 10 dominate so that the dif-
ference between the two systems is negligible. However,
as inverse temperature βJ increases, the free energy dif-
ference between the two systems increases as well. The
point defect system has lower free energy as expected,
which is consistent with the experimentally known fact
that point vacancies have thermal equilibrium concen-
trations whereas higher-dimensional defects cannot be
formed spontaneously [20]. The entropic effect of mul-
tiple vacancy configurations and the stabilizing effect of
structure relaxation have previously been used to explain
this difference [21], but both factors were constant in our
simulations so they cannot account for the free energy
differences observed here. Also, the numbers of broken
bonds are equal, meaning that the “surface areas” are the

same. Thus, this result implies that the stability of point
defects (compared to line and planar defects) is partially
due to the lattice topology itself.

We have hitherto considered qualitative differences be-
tween different graphs. Can we make a quantitative pre-
diction of the system free energy? Although it is im-
possible to obtain a general closed form of equation 10,
a closed form can be obtained for some special types of
contributing graphs. We will focus on a path subgraph
[22] (see Fig. 3a). Among tractable subgraphs, this type
of graph has a significant contribution, because it does
not have any connected parent graph and [g] ≥ [h] if g
is a parent graph of h, so that the path graph provides
one of the largest [g] values among the connected graphs
with the same number of links.

For a path subgraph g of length n(g),

[g] =
∑

Ai0i1Ai1i2 · · ·Ain(g)−1in(g)
= su An(g), (12)

where su A is defined as the element sum of A, i.e.∑
ij Aij . Note that this term contains contributions from

child subgraphs of g (see Fig. 3b). Similarly, we can ex-
press E(g) for a path subgraph g by a relatively simple
form,

E(g) = M−n(g)−1su En(g), (13)

and we will define F̃path(β) as the summation of free en-
ergy contributors corresponding to path graphs:

F̃path(β) =
∑

path g

− 1

β

(−β/2)n(g)

n(g)!
K(g)E(g)[g]. (14)

By using matrix diagonalization (see Appendix E), it
can be shown that

F̃path(β) =
1

2M2

N,M∑
i,j

|ci|2|dj |2λiµj
1 + βλiµj/M

, (15)

for MkBT > max(|λi|) max(|µj |). Here {λi} and {µj}
respectively represent the spectra of A and ε = E −∑
ij Eij/M

2, and their corresponding eigenvector sets are
respectively {|i〉A} and {|j〉ε}. We use inner products
ci = 〈1|i〉A and dj = 〈1|j〉ε, by denoting an all-ones vec-
tor by |1〉.

The free energy formula with the path graph factor is

F (β) = −NkBT lnM +
1

2
E0 · su A− β

4M2

(
tr ε2 − 2

M
su ε2

)
tr A2 +

1

2M2

∑
i,j

|ci|2|dj |2λiµj
1 + βλiµj/M

+ · · · , (16)

where tr A indicates the trace of A, while a simple linear approximation of equation 10 (see Appendix F) gives

F (β) = −NkBT lnM +
1

2
E0 · su A− β

4M2

{(
tr ε2 − 2

M
su ε2

)
tr A2 +

2

M
su ε2su A2

}
+O(β2). (17)
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To illustrate the utility of those approximate formulae,
let us consider an example from biophysics. The des-
ignability of a protein structure is defined as the number
of sequences that fold into the given structure as their
lowest energy state. Biophysicists have been used this
concept to investigate the principles of protein design
and protein evolution (for review, see [23]). As previously
discussed [24], there is a strong relationship between des-
ignability and sequence space free energy, i.e. the free
energy of a heteropolymer in sequence space, instead of
conformation space.

The Hamiltonian of a protein structure is given by

H =
1

2

N,N∑
i,j

AijEAA(i)AA(j). (18)

Here A is called a contact matrix in the protein structure
literature. Each element of A, Aij , is 1 when residues i
and j are nearest neighbors on the lattice but not adja-
cent on the protein backbone, and Aij = 0 otherwise. E
is an interaction matrix that contains interaction ener-
gies for every pair of amino acid types. N is the chain
length, and AA(k) is the amino acid type of residue k.
This formula is analogous to the Hamiltonain for a spin
model (equation 1; see [25]), so we can apply equation
16, or equation 17 to calculate the sequence space free
energy at high sequence space temperature (where mu-
tations can occur relatively frequently).

We studied the sequence space of a 3×3×3 lattice pro-
tein structure (Fig. 4, upper left), whose intra-chain in-
teraction network can be represented by a graph with 27
nodes and 28 links (the total number of non-covalent con-
tacts). We used 10,000 representative structures among
103,346 maximally compact structures [26] to reduce the
computational cost, following Heo et al [27]. We also
employed two types of amino acids, and the interaction
matrix represents hydrophobic and polar interactions:

E =

[
−3J J
J 0

]
(19)

We designated an arbitrary chosen conformation as “na-
tive structure” and scanned all 227 (about 1.3×108) pos-
sible sequences to compute Z(β) =

∑
sequences e

−βH and
the corresponding F (β) for a given β. We denote this F
as the “exact sequence space free energy,” to distinguish
it from a prediction made using equation 16 or 17, which
we will call the “predicted sequence space free energy.”
We repeated this calculation for all 10,000 structures.

Fig. 4 shows the sequence space free energy dis-
tributions over 10,000 lattice proteins at temperature
βJ = 0.1. The predicted values from equation 16 corre-
late strongly with the exact values (red, right axis), while
predictions using the simpler approximation, equation
17, are not capable of discriminating between structures
with different sequence space free energies (blue, left axis)
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FIG. 4: Scatter plots of sequence space free energy
(SSFE) distributions for 10,000 lattice protein

structures, comparing exact and predicted SSFEs at
βJ = 0.1. Equation 16 (red) and equation 17 (blue)

were used to calculate predicted SSFEs. (Upper left) a
cartoon of a prototypical lattice protein. (Lower right)

zoom of the boxed region.

[28]. It is because different structures share same su A2

and tr A2 values, and they can be distinguished only by
considering higher-order terms. However, even in the for-
mer case, strict one-to-one correspondence does not hold
between the exact and predicted values (lower right),
because of contributions from higher-order terms that
F̃path(β) does not capture. Note that the structures are
mainly grouped by three different su A2 values, implying
that the system is still in the high-temperature regime,
where higher-order terms do not dominate.

In this Letter, we presented an analytical method for
calculating the free energy of a spin model on a simple
graph. Through this approach, we find that the free en-
ergy contribution of the graph topology, realized by prod-
ucts of adjacency matrix elements, can be separated from
energetic factors. The theory was illustrated by compar-
ing chain and star graphs. Without specifying the inter-
action matrix, we showed that the star graphs are more
stable than chain graphs in the high-temperature regime.
The approach was then applied to lattice models of al-
loys with different defect types, which lead to different
free energies, even when the systems had the same defect
surface areas. We also showed that linear graphs are spe-
cial in the sense that their infinite sum can be computed
exactly, and this approach was applied to the protein de-
sign problem. The relative order of sequence space free
energies of lattice proteins was predicted relatively accu-
rately by the formula containing the infinite sum from the
linear graph contribution, whereas a mere linear approxi-
mation could not discriminate among structures with the
same su A2 values. We hope that this theory will be ex-
panded and applied to other graph-related problems in
physics, from more complex spin systems to biological
systems and also social networks.
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