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The folding and binding of biomolecules into functional conformations are thought to be commonly
mediated by multiple pathways rather than a unique route. Yet even in experiments where one can
“see” individual conformational transitions, their stochastic nature generally precludes one from
determining whether the transitions occurred through one or multiple pathways. We establish
model-free, observable signatures in the response of macromolecules to force that unambiguously
identify multiple pathways – even when the pathways themselves cannot be resolved. The unified
analytical description reveals that, through multiple pathways, the response of molecules to external
forces can be shaped in diverse ways, resulting in a rich design space for tailored biological function
already at the single molecule level.

A hallmark of biological systems is their ability to tai-
lor their function to a new environment [1]. Biological
function is realized – and tuned in response to perturba-
tion – through the conformational transitions of the con-
stituent biomolecules [2]. The transitions occur through
reaction pathways, each pathway defined as an ensemble
of trajectories in configurational space that connect the
initial and final conformations [3]. Considering that the
energy of even a small protein is described by a rugged
hypersurface – the energy landscape – in the space of sev-
eral thousand coordinates, one should expect biomolec-
ular folding and binding to be commonly mediated by
more than one such pathway (Fig. 1) [4, 5].

Conformational transitions under the influence of ex-
ternal forces can be probed in real time in single-molecule
experiments [6–9]. However, even when one has access
to the conformational trajectories of a single molecule,
stochasticity often precludes a one-to-one mapping of the
individual trajectories to specific pathways. As a result,
it generally remains unclear from the trajectories them-
selves whether the transitions occurred through one or
multiple pathways. Given this ambiguity, how can one
tell if conformational transitions are governed by multiple
pathways? And to what extent can pathway multiplic-
ity provide the design freedom for tailoring biomolecular
function to a changed environment?

Through a unified analytical framework, we show that
multiple pathways can be identified through a set of
universal signatures in the response of the molecule to
force – even when the pathways themselves cannot be re-
solved experimentally. The established signatures man-
ifest themselves in experimentally accessible ranges of
parameters. A spectrum of novel behaviors – multiple
binding modes, enhanced or inhibited transition rate, ex-
tended working range, or robustness – is shown to emerge
even in a minimal multi-pathway system.

Expressions for the measurable quantities. The force
response of macromolecules is typically measured by
stretching individual molecules with either a constant
or ramping force [7]. Constant-force experiments report
the force-dependent rate of transitions from the native

folded/bound state(s) N to the unfolded/unbound state
U . From the flux-over-population formulation of the re-
action rate [10], we find that the net transition rate at
any force F can be universally written as the weighted
sum of the rates ki(F ) along each pathway [11]:

k(F ) =
∑

i

wi(F )ki(F ). (1)

The weight wi({kj(F )}) ∈ [0, 1] is the population-
averaged fraction of the lifetime – or, equivalently, the
steady-state fraction of the population [11, 12] – with
access to pathway i.

Equation (1) is intuitive when pathways originate from
a common N -state (Fig. 2a-f) as they supply transitions
through their combined flux. Perhaps less intuitively,
Eq. (1) holds even when pathways originate from discon-
nected N -states (Fig. 2g): the slowest pathway has the
largest weight wi(F ) (∼ time), limiting the net transition
rate.

Microscopically, transition rates are governed by ac-
tivation barriers, which themselves change under force.
The force-dependence of the rate kj(F ) has been es-
tablished analytically from Kramers theory for a single-
barrier pathway in terms of its zero-force rate k0j and
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FIG. 1. A fragment of the energy landscape of a biomolecule
with multiple reaction pathways connecting distinct confor-
mational states. This Letter addresses the challenge of iden-
tifying the presence of multiple pathways and explores the
functional advantages of pathway multiplicity.
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where β ≡ 1/kBT and νj parameterizes the shape of
the barrier. For a multi-barrier pathway i, the net rate is
determined by the rates {kj(F )} of the constituent single-
barrier pathway segments. Together, Eqs. (1, 2) describe
the evolution of the net transition rate with force when
multiple pathways are present.

Force-ramp experiments report the distributions of
transition forces, p(F |Ḟ ), at different force-loading rates
Ḟ (F ). To establish an analytical form of these distribu-
tions, we express p(F |Ḟ ) as the sum of the fluxes into U
from all pathways:

p(F |Ḟ ) =
∑

i

ppath i(F ) =
∑

m,j

k
Xm

j−→U
(F )

Ḟ (F )
φXm

(F ).

(3)
Here, the second equality specifies the ingredients of each
flux: the population φXm

(F ) in a state Xm that is a
single pathway segment j from U (Fig. 1), the transi-
tion rate k

Xm

j−→U
(F ) of this segment, and the loading

rate. The population φXm
(F ) ∈ [0, 1] is equivalent to

the joint probability of having entered and not yet left
Xm by the time force F is reached. As such, φXm

(F )
is determined by the rates {kj(F )} and survival prob-
abilities {Sj(F )} of all segments that transmit popula-
tion toward or away from Xm. Sj(F ) is the solution to
the rate equation describing escape through segment j:
dSj(F )

dt
= −kj(F )Sj(F ). With kj(F ) in Eq.(2) and the

loading rate expressed through the stiffness and speed of
the pulling device, Ḟ ≈ κSV , this equation is exactly
solvable:

Sj(F ) = exp


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(4)
Having analytically established the key quantities,
Eqs. (1-4), we can address the experimental identification
and functional advantages of multiple pathways through
a hierarchy of fundamental multi-pathway configurations.

a. Maximizing the transition rate by switching path-

ways. The simplest multi-pathway configuration con-
sists of two pathways, each directly connecting N to U
(Fig. 2a-b). The net rate, measurable in a constant-force
experiment, is obtained from Eqs. (1, 2) with wi(F ) = 1:
k(F ) = k1(F ) + k2(F ). The force distribution, measur-
able in a force-ramp experiment, is obtained from Eq. (3)
with Xm = N , k

N
1−→U

(F ) = k1(F ), k
N

2−→U
(F ) = k2(F ),

and φN (F ) = S1(F )S2(F ) being the probability of taking

neither pathway by force F . The contribution of pathway
i to the force distribution in Eq. (3) is thus

ppath i(F ) =
ki(F )

κSV
S1(F )S2(F ) (5)

with Si(F ) in Eq. (4).
Through the effect that force has on individual bar-

riers, force can turn an intrinsically slow pathway into
the dominant pathway. This switch in pathway domi-
nance occurs if the high intrinsic barrier of the initially
slow pathway is softer, x‡

2 > x‡
1, and thus more compli-

ant under force. The force at which the system switches
pathways is found by asking, via Eqs. (1, 2), when the
rates along the pathways become equal [11]:
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(6)
Equations (1, 2) further predict that the pathway switch
manifests itself as an anomalous upturn in the transition
rate at Fswitch (Fig. 2a) – a result of the crossover to the
strongly force-dependent rate of the soft barrier.
In force-ramp experiments, the pathway switch yields

a transient increase in the height of the force distribution
with increasing loading rate (Fig. 2a), which contrasts
the monotonic decrease characteristic of single-pathway
transitions [11, 13]. The height increase originates from
the softer barrier faced upon the switch: force lowers
a softer barrier faster such that transitions are com-
pleted within a narrower force range. The evolution of
the distributions with loading rate, including the anoma-
lous height trend, is captured by the analytical theory,
Eqs. (3, 5) (Fig. 2a). At low and high loading rates,
where only one pathway dominates, the known single-
pathway behavior is recovered [11, 13]. Other measurable
signatures of a pathway switch include a sigmoidal vari-
ance and a downturn in the average force versus loading
rate [11].
A functional advantage of switching pathways is the

resulting transition rate, which is maximized over a sig-
nificantly broader force range than what is possible with
either pathway alone (Fig. 2a). Evidence of this sce-
nario, an upturn in the rate, has been observed in SH3
[16], whose ability to switch conformations rapidly under
cellular stresses is consistent with its role as a regulatory
component of many signaling proteins.
b. Conforming to high force yet increasingly resisting

low force. The pathway switch yields an intriguing be-
havior (Fig. 2b) when one pathway resists force, a con-
sequence of its transition state being more compact than
N : x‡

i < 0. Equations (1, 2) predict that, when a force-
resistant pathway is dominant at zero force, but a force-
compliant pathway takes over beyond Fswitch, the switch
produces a dip in the rate (Fig. 2b). This signature, ob-
servable in constant-force experiments, is the result of a
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FIG. 2. Fundamental multi-pathway configurations: distinguishing signatures and functional advantages. Lines: theory.
Histograms: simulations. Symbols: simulations, transformed histograms [14, 15]. (a) A pathway switch yields an upturn in
the rate and a nonmonotonic trend in the force distributions with loading rate. The transition rate becomes maximized over a
broad force range. (b) Switching from a force-resistant to a force-compliant pathway yields a dip in the rate and bimodal force
distributions with a zero-force peak. The system rapidly dissociates under strong forces yet increasing resists weak forces. (c)
An intermediate leading to a slow transition step under rapid N − I exchange yields a plateau in the rate and bimodal force
distributions. Transient insensitivity to perturbation is acquired. (d) An intermediate leading to a fast step yields a sigmoidal
rate curve and a nonmonotonic trend in force distributions. Distinct binding modes are acquired. (e,f) An intermediate
irreversibly sequestering population yields bimodal force distributions where the peaks dominate at different loading rates. The
transitions become spread over broader time- and force-ranges. (g) Multiple native states yield a transient unimodality in the
force distribution. The rate of transitions leaving the functional state becomes inhibited. (h,i) For reference: single-pathway
transitions with one [13] and multiple [17] barriers with corresponding signatures.

crossover from the decreasing rate of the force-resistant
pathway to the increasing rate of the force-compliant
pathway.

In force-ramp experiments, the pathway switch is
marked by distinct bimodality in the force distributions:
the first peak remains at zero force under all loading rates
(Fig. 2b). This peak originates from the force-resistant
pathway, whose transition probability is highest when no
force is applied.

The upturn and dip in the rate (Fig. 2a-b) are straight-
forward to distinguish from the opposite curvature char-
acteristic of single-pathway transitions, either through

one [13] or multiple [17] barriers (Fig. 2h-i), even with re-
binding. The sharpness of the upturn/dip distinguishes
it from the gradual upturn accompanying the alignment
of a pathway with the pulling direction [11, 18].

A combination of force-resistant and force-compliant
pathways introduces a global minimum in the off-rate
(Fig. 2b). This signature has been observed in exper-
iments on leukocytes [19], where it creates a range of
forces (shear stresses) at which leukocytes can adhere to
blood vessel walls for long enough to roll and search for
inflammation.
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c. Acquiring robustness through a plateau in

the rate. Moving up in complexity, consider an
intermediate state I on one pathway (Fig. 2c-f).
The net transition rate from Eq. (1) is k(F ) =

{1 + kNI(F )/ [kIU (F ) + kIN (F )]}−1
k1(F ) + k2(F ) with

the rate of the intermediate-containing pathway k2(F ) =
[1− w1(F )] kIU (F ) and weights w1, 2(F ) specified in Ta-
ble S1 [11]. Here, w2(F ) = 1, but w1(F ) < 1 as pathway
1 is only accessible from N . When the intermediate is
short-lived, kIU (F ) ≫ kNI(F ), the net rate of configura-
tions a-b is recovered. Otherwise, new behaviors emerge
(Fig. 2c-f), dictated by the relative speeds of N − I ex-
change and transitions into U .
Under fast N − I exchange (kNI(F ), kIN (F ) ≫

k1(F ), kIU (F )), N and I remain in equilibrium at all
forces (Fig. 2c-d). When I is separated from U by a
high barrier, kIU (F ) ≪ k1(F ), I becomes a transient
trap. Equations (1, 2) reveal that this trapping produces
a plateau in the net transition rate (Fig. 2c). The plateau
sets in at the force where transitions into U from the fast
pathway subside, w1(Fplateau) ≈ 1/2, because the popu-
lation instead accumulates in I [11]:

Fplateau ≈ ln
(

k0IN/k0NI

)

β(x‡
NI − x‡

IN )
. (7)

The force distribution is obtained from Eq. (3) (Table
S1) with {Xm} = {N, I} and the populations φXm

(F )
each being the probability of residing in state Xm and
having not yet transitioned into U . Treating N−I as one
effective state with two pathways of rates w1(F )k1(F )
and w2(F )k2(F ), we can write the contributions from
each pathway analogously to Eq. (5):

peqpath i(F ) =
wi(F )ki(F )

κSV
Seq
1 (F )Seq

2 (F ), (8)

where Seq
i (F ) is found by solving dSeq

i (F )/dF =
−wi(F )ki(F )Seq

i (F ) [11]. Equations (3, 8) reveal that
the transient trapping causes bimodality in the force
distributions that emerges at intermediate loading rates

(Fig. 2c), Ḟ ≈
√
2k1(Fplateau)/

[

β(x‡
NI − x‡

IN )
]

[11].

The low-force peak, the sole peak at low loading rates,
reflects transitions via the fast pathway. The high-force
peak reflects transitions via the alternative pathway with
I as the new source.
A plateau in the rate (Fig. 2c) provides robustness,

or transient insensitivity to perturbation, at the single
molecule level.
d. Acquiring distinct binding modes through a sig-

moidal rate curve. Alternatively, when I is separated
from U by a small barrier, kIU (F ) ≫ k1(F ), I provides
access to a faster transition step (Fig. 2d). At low forces,
the population predominantly transitions via N → U .
At intermediate forces, the population spends increas-
ingly more time in I with access to the fast step I → U ,

resulting in a steep growth in the rate. At high forces,
I becomes sufficiently stable to accumulate the remain-
ing population, ending this steep growth. These three
regimes produce a sigmoidal rate curve measurable in
constant-force experiments (Fig. 2d).
In force-ramp experiments, an I that provides access

to a fast transition step yields a nonmonotonic trend in
the force distributions with loading rate (Fig. 2d). This
anomaly, captured by Eqs. (3, 8), can be distinguished
from configuration a [11].
A sigmoidal rate curve introduces two operating

modes, a binding mode at low forces (low off-rate) and
a dissociation mode at high forces (high off-rate). This
effect is analogous to cooperative binding, as in the clas-
sic sigmoidal oxygen-hemoglobin binding curve [1], yet is
achieved here without the need for cooperative ligands.
e-f. Broadening the range of resistance to stress by de-

laying transitions. When N − I transitions are instead
rare,N → I is essentially irreversible on the experimental
timescale. When kIU (F ) ≫ kNU (F ), we recover config-
uration a (Fig. 2a). However, when kIU (F ) ≪ kNU (F ),
I irreversibly sequesters a portion of the population, de-
laying its arrival into U (Fig. 2e-f). Unlike equilibrium
trapping (Fig. 2c), both pathways are utilized even when
one is significantly faster.
Under constant force, this sequestration substantially

reduces the net transition rate even if only a few tran-
sitions seep into I. When kNI(F ) > kNU (F ), the net
rate drops close to the rate of the slow, intermediate-
containing pathway, k2(F ) (Fig. 2f). However, even when
kNI(F ) ≪ kNU (F ), i.e. the sequestering effect is weak,
the net rate does not reach the rate of the fast path-
way, k1(F ) (Fig. 2e). The irreversible splitting of the
population between N and I yields a distinct, double-
exponential decay in the survival probability SN+I(t)
[11].
Under a force-ramp, the force distribution is obtained

from Eq. (3) (Table S1) with the population inN , φN (F ),
being the probability of neither taking pathway 1 nor en-
tering pathway 2 by force F . The population in I, φI(F ),
is the product of the probabilities of transitioning into I,
kNI(F

′)SNI(F
′)S1(F

′)/Ḟ (F ′), and remaining there un-
til force F , SIU (F )/SIU (F

′); integration over F ′ includes
all transitions into I at forces F ′ ≤ F . The resulting
pathway contributions,

pirpath1(F )=
k1(F )

κSV
S1(F )SNI(F ), pirpath2(F )=

kIU (F )

κSV

∫ F

0

kNI(F
′)SNI(F

′)S1(F
′)

κSV

SIU (F )

SIU (F ′)
dF ′,

(9)

together produce a bimodal distribution (Fig. 2e-f), re-
flecting the irreversible splitting of the N− I population.
The evolution of the two peaks with the loading rate
identifies the underlying kinetic scheme. Specifically, if
kNI(F ) > kNU (F ) at low forces and kNU (F ) > kNI(F )
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at high forces (sequestering at low forces), increasing the
loading rate gives I less time to sequester population;
consequently, the high-force peak shrinks while the low-
force peak grows (Fig. 2e). Reversed rate inequalities
(sequestering at high forces) result in the opposite trend
(Fig. 2f).
By sequestering, and thus delaying, a fraction of tran-

sitions, the system resists stress over broader ranges of
timescales and forces (Fig. 2e-f). Experiments on the
blood-clotting protein von Willebrand factor reported
the splitting of transitions and emerging bimodality
in the force distributions [20], suggesting that the ex-
tended working range exhibited by this protein is realized
through this multi-pathway mechanism.
g. Inhibiting the dissociation rate through multiple

native-like states. N and I act as coexisting native
states, N1 and N2, when both states are initially popu-
lated but N−I transitions are negligible, kNI,IN (F ) ≈ 0
(Fig. 2g). Equation (1) for the net transition rate mea-
surable at constant force becomes (Table S1) k(F ) =

[p1/k1(F ) + p2/k2(F )]
−1

. The fraction pi of population
originating from Ni is readily obtained either as the frac-
tion of transitions into U from Ni if the native states
are experimentally distinguishable, or from a fit of the
survival probabilities, S(t) =

∑

i pie
−ki(F )t [11]. While

the net rate is limited by the slowest pathway, an origi-
nally fast pathway can become rate-limiting under force,
producing a downturn in the net rate at Fswitch, Eq. (6)
(Fig. 2g).
In the force-ramp regime, the contributions from the

individual pathways to the measurable force distribution
are found from Eq. (3) (Table S1):

pmult N
path i (F ) = pi

ki(F )

κSV
Si(F ). (10)

Each contribution is an independent, unimodal single-
pathway distribution. Their superposition exhibits bi-
modality, interrupted by transient unimodality at inter-
mediate loading rates (Fig. 2g), which distinguishes these
distributions from those of a single-barrier pathway (al-
ways unimodal [13], Fig. 2h) or a multi-barrier pathway
(bimodal only at intermediate loading rates [17], Fig. 2i).
Multiple native states diversify the response to per-

turbation while inhibiting the rate of leaving the func-
tional state (Fig. 2g). A ribozyme, an RNA that cat-
alyzes reactions, was found to possess multiple native
states [21, 22], which may underlie its ability to operate
on multiple timescales.
The diverse spectrum of force-responses revealed

through these minimal multi-pathway configurations pro-
vides a foundation for understanding more complex sys-
tems. Indeed, each additional pathway will produce an
additional signature from the repertoire in Fig. 2 if the
transition rates dominate over different ranges of force
[11]. Considering that force enters the theory as a generic
bias field imposed on the conformational dynamics, these

findings should remain relevant under other types of per-
turbations, such as a chemical denaturant [23] or electric
field [24].
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