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We propose that in a certain class of magnetic materials, known as non-Kramers ‘spin ice,’ disor-
der induces quantum entanglement. Instead of driving glassy behavior, disorder provokes quantum
superpositions of spins throughout the system, and engenders an associated emergent gauge struc-
ture and set of fractional excitations. More precisely, disorder transforms a classical phase governed
by a large entropy, classical spin ice, into a quantum spin liquid governed by entanglement. As
the degree of disorder is increased, the system transitions between (i) a “regular” Coulombic spin
liquid, (ii) a phase known as “Mott glass,” which contains rare gapless regions in real space, but
whose behavior on long length scales is only modified quantitatively, and (iii) a true glassy phase
for random distributions with large width or large mean amplitude.

Entanglement defines the essential non-classical fea-
tures of quantum mechanics. While entanglement has
been achieved and controlled for small numbers of quan-
tum bits (“qubits”), many-body entanglement of a ther-
modynamically large system is an exciting frontier [1, 2].
Long range entanglement engenders exotic phenomena
such as fractional quantum numbers and emergent topo-
logical excitations, and is important not only in the
realm of materials but even in the theory of fundamental
forces[3]. Theoretically, the exemplars of such massive
“long range” entanglement are Quantum Spin Liquids
(QSLs), states of quantum magnets in which electronic
spins reside in macroscopic superpositions of infinitely
many microstates [4].

QSLs have been elusive experimentally, in part because
disorder induces competing glassy states instead of en-
tangled ones. However, here we show that this need not
be the case, and propose to use the disorder itself to gen-
erate long-range entanglement. Because disorder is not
intrinsic, it can be readily tuned so that serendipity is
no longer required to find the QSL state. The essential
ingredients are present in spin ice materials [5, 6] such
as Ho2Ti2O7 and Pr2Zr2O7 with non-Kramers magnetic
ions. In the classical limit – an excellent approximation
for Ho2Ti2O7 – and without disorder, these materials
have Ising spins on a pyrochlore lattice of corner-sharing
tetrahedra, with a frustrated interaction that selects an
extensive set of ground states: those with two spins in
and two spins out on each tetrahedron. We construct a
model for disorder in these materials which naturally in-
troduces the quantum fluctuations sufficient to generate
a quantum spin liquid from a massive superposition of the
two-in-two-out states. We show that this model indeed
supports not one but two QSL phases, one of which is
a long range entangled analog of the “Mott glass” phase
of disordered bosons [7–9]. On application of a physical
magnetic field we obtain an even more glassy “Bose glass”
QSL phase [10]. We emphasize these are true QSLs with
long range entanglement, emergent gauge structure, and
exotic non-local excitations. The glassy QSLs differ from

the pure QSL by having additional gapless but localized
excitations at low energy. To our knowledge this is the
first proven example where true QSL states are engen-
dered by disorder. Our model applies to the archetypal
classical spin ice material Ho2Ti2O7, and predicts that it
can be tuned to a quantum spin liquid by controlled in-
troduction of disorder. The full phase diagram is shown
in Fig. 1.
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FIG. 1. Phase diagram in the mean strength of disorder h
— disorder δh plane. The dotted line indicates a first order
transition, while the solid lines represent second order tran-
sitions or crossover (between the Coulomb QSL and Griffiths
Coulomb QSL). In the disordered boson language, the para-
magnet is a “superfluid” (Higgs) phase, the Griffiths phase is
a Mott glass, and the Coulomb QSL is a “Mott insulator”.
The clean spin ice point sits at h = δh = 0 and represented
by a white circle.

Our analysis begins with the atomic physics of trivalent
rare earth ions in the spin ice pyrochlores [11]. In many,
e.g. Pr3+ and Ho3+, the low energy states of the magnetic
ion comprise a non-Kramers doublet with degeneracy
protected by the D3d point group symmetry, described
by a pseudo-spin 1/2 operator ~Si. Under time-reversal
symmetry, in the local basis aligned with the 〈111〉 axis
of the site, the “up” and “down” spin levels interchange:
i.e. Θ̂| ± 1

2 〉 = | ∓ 1
2 〉, where Θ̂ is the anti-unitary time-
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reversal operator. Note that Θ̂2 = +1, which defines the
non-Kramers case. It follows that Szi → −Szi under time-
reversal, while Sxi and Syi are time-reversal invariant.

In clean spin ice systems, an excellent first approxima-
tion to the Hamiltonian is given by the nearest-neighbor
spin ice Hamiltonian,

H0 = J
∑
〈ij〉

Szi S
z
j −B ·

∑
i

gSzi êi. (1)

The first term, with J > 0, is a frustrated Ising interac-
tion between spins. It appears antiferromagnetic in the
local basis but represents ferromagnetic coupling of the
magnetic moments in a global frame. The second term
is the only symmetry-allowed interaction of the magnetic
field with the spins in the non-Kramers case: the mag-
netic moment operator is, by symmetry, mi = gSzi êi.
Quantum exchanges coupling in-plane components Sxi ,S

y
i

on nearest-neighbor sites can also occur, but are small in
Ising-like systems. For example, in Pr3+, it is estimated
that the probability to be in the maximal jz = ±4 states
of the j = 4 levels is 93% [12], while Ho3+, which has
j = 8, is even more Ising-like.

Now we examine the effect of disorder. We con-
sider non-magnetic disorder maintaining rare-earth stoi-
chiometry, and assume there is no ordered Jahn-Teller
distortion as appears to be the case in experiments.
Rather, disorder generates (electrostatic) crystal fields
which lower the symmetry of the rare earth site, and
hence can split the non-Kramers doublet. Due to time-
reversal symmetry, these crystal fields couple directly to
the in-plane components of ~Si. Hence disorder adds the
term

H ′ = −1

2

∑
i

(
η∗i S
−
i + ηiS

+
i

)
, (2)

where ηi is a random complex number, acting as an XY
“random field” (though we caution there is no true field,
and H ′ is time-reversal invariant). In general, the prob-
lem is specified by giving the full distribution of the ran-
dom fields, P [{ηi}], and the statistical space group sym-
metry of the crystal should be respected by this distri-
bution. We will largely focus on the simplest limit of in-
dependent, identically distributed random variables, i.e.
P [{ηi}] =

∏
i p(ηi) (but this is not essential).

The full Hamiltonian, H = H0+H ′, defines a quenched
random transverse field Ising model. It can be simplied
by defining ηi = hie

iαi , where hi > 0 is real and 0 ≤
αi < 2π. The phase αi can be removed by a basis rotation
around the local z axis, generated by the unitary operator
U =

∏
i e
iαiS

z
i . After the transformation, we have

H → U†HU = J
∑
〈ij〉

Szi S
z
j −
∑
i

hiS
x
i −B ·

∑
i

gSzi êi. (3)

We see that in zero applied field, B = 0, this is really the
standard transverse field Ising antiferromagnetic model,

with random magnitudes of the transverse field, drawn
from some distribution p(h). We expect that a variety
of distributions can be tuned experimentally (see Supp.
Mat.).

Perturbative regime: hi � J.— When all or nearly
all the hi � J , (i.e. the probability that h > fJ , with
f a small fraction of 1, is small:

∫∞
fJ
p(h)dh � 1) we

may apply perturbation theory. We obtain the effective
Hamiltonian at sixth order in the transverse fields within
the degenerate manifold of classical spin ice states (Supp.
Mat.):

Heff = −
∑
7

(
KijklmnS

+
i S
−
j S

+
k S
−
l S

+
mS−n + h.c.

)
, (4)

where Kijklmn =
63hihjhkhlhmhn

16J5 . Eq. (4) defines a ran-
dom ring exchange model. As shown first by Hermele et
al. [13], when K is constant, the ring exchange model has
the structure of a compact U(1) gauge theory, in which
S±i plays the role of a U(1) gauge connection (exponential
of a gauge field) on the links of the dual diamond lattice
formed from the tetrahedron centers, and Szi acts as the
conjugate “electric” field. On general grounds, such a
theory can support a trivial “confined” phase which is
short range entangled and a deconfined Coulomb phase,
which is long range entangled [14]. In the latter, the
compactness is unimportant and the low energy physics
is an emergent quantum electrodynamics, with a gapless
photon and gapped electric and magnetic charged quasi-
particles. This is a U(1) QSL phase. Numerical studies
have shown that the ground state of this specific model
for constant K is in the U(1) QSL phase [15–17].

Weak randomness: δh� h.— Let us now consider
first weak randomness, i.e. a distribution p(h) peaked
around h with small width δh � h. The obvious po-
tential instabilities of the U(1) QSL phase are due to
vanishing gaps for electric and magnetic charges. The
electric charges (in standard quantum conventions) cor-
respond to tetrahedra violating the ice rules, and in the
perturbative limit have a gap of order J � K, and hence
remain gapped regardless of the distribution p(h). The

magnetic charges have a gap of order K ∼ h6
/J5, which

is still much larger than the random perturbation to Heff

which is of order δK ∼ (h/J)5δh. Thus the gap to mag-
netic charges is also robust.

What of the photon? The absence of magnetic charges
justifies the continuum limit, for which symmetry implies

Hphoton =

∫
d3x
{ ε

2
(1+vE(x))|E|2+

1

2µ
(1+vB(x))|B|2

}
,

(5)
where vE(x) and vB(x) are zero-mean random functions
of space, and ε, µ are the effective dielectric constant
and magnetic permeability, respectively. Simple power-
counting shows that both random terms are strongly ir-
relevant at low energy and long distances (with short-
range correlations, [v] = L−3/2 in three dimensions). The
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key point is that gauge invariance forces disorder only to
couple to E and gradients of the vector potential A, so
that, even if we relax the constraint of time-reversal sym-
metry in Eq. (5), the photon remains stable. This is sim-
ilar to the suppression of scattering of acoustic phonons
at low energy in a disordered crystal [18], and the lack of
localization of light in a disordered photonic material at
low frequency [19].

Larger disorder: δh ∼ h.— We have established
the stability of the U(1) QSL with weak disorder. Now
let us consider increasing the disorder, still within the
perturbative regime, i.e. the random ring model with
δh ∼ h. In general the ground state depends now on the
full distribution p(h) (or the induced distribution p(K)).
The gap to electric charges remains robust, but the mag-
netic gap may close, leading to confinement. The physical
mechanism whereby this might occur is order-by-disorder
[20, 21]. The ring Hamiltonian, Eq. (4), is a kind of
“hopping” in the high dimensional manifold of classical
spin ice states. In the uniform case, the ground state is
delocalized across an extensive subset of this manifold:
this is the QSL state, which obtains the same energy for
each ring term. We can also imagine a different state
which gets a lower energy for some “strongly resonating”
ring terms (better than the delocalized state) but sac-
rifices energy for other rings – in the non-random case
this necessarily breaks lattice symmetries. Above some
threshold width of the distribution p(h)–which is a pri-
ori not small– such a confined “order by disorder” state
may occur. The confinement transition to such a state
has a dual interpretation as condensation of the magnetic
charged excitations of the QSL phase.

Non-perturbative case: hi ∼ J.— When the trans-
verse fields are not small, the perturbative treatment no
longer applies. Instead, we adopt the slave rotor repre-
sentation introduced for the uniform quantum spin ice
problem in Ref. 22, and discuss the full phase diagram in
this framework. This is an exact rewriting of the original
spin system, by introducing explicit operators to track
spinons (or electric charges) on the sites a, b, · · · of the
diamond lattice. The charge is Qa = εa

∑
i∈a S

z
i , where

εa = +1(−1) on the diamond A (B) sublattice. A conju-
gate phase ϕa is defined by [ϕa, Qb] = iδab. Then the spin

operators are rewritten as Szi = szab and S+
i = Φ†as

+
abΦb,

where a, b are the two tetrahedra sharing site i, on the A
and B sublattices, respectively, and Φa = e−iϕa . The sµab
spins are canonical spin-1/2 degrees of freedom, and for
convenience we define szba = −szab and s±ba = s∓ab. Then
the Hamiltonian, Eq. (3) becomes

H =
J

2

∑
a

Q2
a −

1

2

∑
〈ab〉

hab

[
Φ†as

+
abΦb + h.c.

]
. (6)

This Hamiltonian contains a potential term, and a kinetic
term which represents electric charges (spinons) hopping
on top of a fluctuating background gauge field, and which

appears only for non-zero disorder. The coupling of the
spinons to the gauge field leads to a strongly-interacting
problem.

Gauge Mean Field Theory: no gauge field
fluctuations.— First, we discuss an approximate so-
lution obtained by gauge Mean Field Theory (gMFT)
[22], which, in the present case essentially consists in
suppressing the fluctuations of the gauge field. Namely,
we perform the replacement Φ†sΦ→ Φ†Φ〈s〉+ 〈Φ†Φ〉s−
〈Φ†Φ〉〈s〉. The resulting mean field Hamiltonian is com-
posed of two decoupled parts, a “spin” ~s in a random
field, and a quadratic spinon hopping Hamiltonian:

HΦ =
J

2

∑
a

Q2
a −

1

2

∑
〈ab〉

[
tabΦ

†
aΦb + h.c.

]
(7)

=
J

2

∑
a

Q2
a −

∑
〈ab〉

tab cos(ϕa − ϕb), (8)

with tab = hab〈s+ab〉, which we assumed to be real in the
right-hand side expression, as is indeed the case for the
gMFT solution. We recognize this as the Hamiltonian of
a (three-dimensional) array of Josephson junctions, i.e.
a quantum XY/rotor model, coupling “grains” on the
diamond lattice with random Josephson coupling tab.

Uniform field — While our primary interest is in dis-
order, we first consider the case of a uniform h, for which
Eq. (6) is translationally invariant, and we make the
Ansatz that 〈s〉 (and hence tab) be also uniform. Then
the quantum XY model in Eq. (7) is expected to have
two phases: a “superfluid” state with 〈eiϕa〉 6= 0 and a
Mott insulator phase with 〈eiϕa〉 = 0 and a gap to all
excitations. The “superfluid” state corresponds to the
Higgs phase of the gauge theory – the trivial transverse
polarized state of the original model. A calculation in
Appendix B locates the the Higgs transition, where the
spinons become gapless, between the Mott and superfluid
states approximately at (h/J)c ≈ 0.35. Below (h/J)c the
system is in the Coulomb phase (“Mott”), and charac-
terized within gMFT by 〈Φ〉 = 0. In this phase, fluc-
tuations around the mean field solution reproduce the
photon Hamiltonian, c.f. Eq. (5). We expect that the
transition to the paramagnetic phase in the disordered
case occurs at a similar magnitude of h/J .

Random field.— Now we return to the full problem
with random hab, hence random tab. The gMFT Hamil-
tonian in Eq. (7) then describes a well-studied “dirty
boson” problem, notably with particle-hole symmetry
Qa → −Qa, ϕa → −ϕa. We can trace this back to the
time-reversal symmetry of the original model. Due to
disorder, an additional phase emerges between the Mott
insulator and superfluid: a gapless insulating state which
has been called a “Mott glass” [7–9]. In most respects the
Mott glass is similar to the Mott insulator (the Coulomb
phase in spin language), but differs by the presence of
rare regions which look locally superfluid (trivial, para-
magnetic, polarized), and consequently have very small
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gaps controlled by their finite size. In an infinite sys-
tem, arbitrarily large regions of this type can be found,
leading to a “Griffiths phase” [23] with a vanishing gap
in the thermodynamic sense. Due to particle-hole sym-
metry, the superfluid regions are exceedingly rare, and
numerics suggest [9] they are exponentially distributed
in their size, i.e. the density of superfluid regions of s
sites decays as e−(s/s0)γ , with γ ≈ 1 and s0 a constant.
This in turn implies that the largest superfluid cluster
in a system of size L grows logarithmically, smax ∼ lnL.
Since a superfluid region of size s has a gap of order
1/s, the finite-size gap of the Mott glass is therefore or-
der ∆L ∼ 1/ lnL, which vanishes in the thermodynamic
limit.

Beyond gMFT.— These properties need to be trans-
lated into their physical consequences for the full prob-
lem, beyond gMFT. A picture is as follows: fluctua-
tions convert the Mott insulating bulk with superfluid
inclusions to a Coulombic bulk with Higgs inclusions –
a Coulombic Griffiths phase. This is analogous simply
to a dielectric medium with embedded superconducting
grains [24]. The latter exclude the gauge fields and act
as low energy hosts for electric charges – specifically, the
“charging energy” for a grain of linear size ` is of or-
der 1/`. The spinon gap vanishes, with the gapless low
energy spinon states localized on these grains. Modifi-
cations of the photon are like those of an electromag-
netic wave in a dielectric+superconducting “metamate-
rial”. Such waves are insensitive to rare regions, but
are dominated by typical ones. At low frequency the sys-
tem behaves as an effective medium with an enhanced di-
electric constant, but at frequency and wavevector scales
comparable to the gap and inverse typical size/spacing of
the Higgs regions, the photon will scatter and develop an
intrinsic, disorder-dominated, linewidth. Since the emer-
gent photon continues to remain gapless and propagate,
and electric and magnetic charges can still exist in iso-
lation in the system, the Griffiths phase should still be
considered a Coulombic spin liquid.

In the full treatment, the mean-field superfluid phase,
becomes the confined paramagnetic phase. For weak dis-
order, i.e. δh � h, there can be a true gapped param-
agnet, but for strong disorder we expect a zero gap state
with localized low energy excitations – a Griffiths param-
agnet. So the zero temperature phase diagram contains
both the usual Coulombic liquid with gapped electric and
magnetic charges, a Griffiths Coulomb liquid with gap-
less electric charges, and the thermally insulating unen-
tangled paramagnetic state. It is worth noting that the
application of a physical magnetic field (which couples
to Szi rather than S±i ) breaks time-reversal symmetry
and hence the particle-hole symmetry of the emergent
gauge theory. Consequently, it converts the Mott glass
to a Bose glass, which has much stronger Griffiths effects.
The experimental ramifications would be a an excellent
subject for future research. Conversely, any additional

type of disorder such as microscopic exchange random-
ness or lattice strains, which do not break time-reversal
symmetry, cannot destabilize the Mott glass, as they pre-
serve the emergent particle-hole symmetry between pos-
itive and negative charges.

Phase transitions.— Disorder has major effects
upon the transition from the QSL to the trivial state.
In mean field theory and without disorder, the transition
is described by condensation of a complex field represent-
ing the spinon or Higgs field. This must be corrected by
both disorder and coupling to the U(1) gauge field, effects
which have been considered separately before but not to-
gether in the literature. The gauge coupling alone renders
this a U(1) abelian Higgs transition, governed by an ef-
fective action which has the form of a Ginzburg-Landau
theory. The coupling to the gauge field is marginal in the
Renormalization Group (RG) sense in 3 + 1 dimensions,
and is known [25] to destabilize the continuous transi-
tion and render it weakly first order. Disorder alone is
strongly relevant, and the transition becomes non-trivial:
a double epsilon expansion [26] exists for the critical the-
ory, but the extrapolation to 3 + 1 dimensions is quan-
titatively poor. Nevertheless, it supports a picture of a
statistically scale-invariant theory, characterized by a dy-
namical exponent z relating time and space, t ∼ xz or
frequency and wavevector, ω ∼ kz, with z > 1, reflecting
the slow-down of dynamics by disorder.

Now we consider the two effects together. For very
weak disorder the first order transition of the abelian
Higgs theory is stable according to Imry-Ma arguments
[27], but it should be rapidly removed with stronger dis-
order. To access the resulting continuous transition, we
perturb the disordered critical point, which has some
non-trivial critical action Sd, by coupling to the gauge
field, and show that this coupling is relevant in the RG
sense. We write the action as S = Sd+

∫
d3xdτ [ieAµJµ+

F 2
µν ], where Fµν is the field strength of the emergent

gauge field Aµ, and Jµ(x, τ) are the U(1) space-time cur-
rents of the bosons. Integrating out the gauge fields in
the Coulomb gauge ∇ · A = 0 we obtain an effective
long-range interaction between currents. For the time-
components,

S00 ∼ e2

∫
d3xd3x′dτ

J0(x, τ)J0(x′, τ)

|x− x′|
. (9)

Now we use the non-renormalization of scaling dimen-
sions of conserved currents, even in disordered field the-
ories [28]. This allows us to exactly power count Eq. (9),
according to J0 ∼ L−d, and τ ∼ Lz. We obtain
S00 ∼ e2Lz−1, which implies that the coupling e2 is rel-
evant for z > 1. Thus we predict the system flows to
a new critical theory with both non-zero disorder and
gauge coupling. This is a new quantum critical univer-
sality class not heretofore studied to our knowledge.

Experiments and beyond.— We argued that, re-
markably, the well-studied and characterized classical
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spin ice Ho2Ti2O7 may be converted to a QSL by in-
troducing disorder. Interestingly, the dynamics are non-
monotonic with disorder: introducing weak disorder first
speeds up the dynamics by introducing transverse pro-
cesses, while strong disorder fully quenches and freezes
the moments. This non-monotonicity should be visible
in the spin thermal conductivity [29, 30]. Unfortunately
its interpretation is typically clouded by the difficulty of
separating the (sought after) contribution from the in-
trinsic heat conduction of the spins, from the (less inter-
esting) heat carried by phonons but scattered by spins.
Here the non-monotonicity aids in a clean separation of
these effects: on introducing disorder the spin thermal
conductivity grows, developing a large T 3 contribution,
whose coefficient first increases, reaches a maximum, and
then collapses on leaving the QSL state. Indications of
the disorder-catalyzed dynamics should be visible also
in many other probes, such as a NMR and NMQ re-
laxation, µSR, and microwave conductivity. Within the
QSL state, the photon mode could be observed in inelas-
tic neutron scattering, with an intrinsic width controlled
by disorder, and growing with frequency. In the Griffiths
QSL, the gapless localized electric excitations can also be
pairwise excited, introducing a momentum-independent
background, which we expect scales as S(k, ω) ∼ e−c/ωx ,
with x of order one. We expect that the dc thermal
conductivity, however, is not much affected by the rare
regions, as the heat flow simply avoids them, and thus
the conductivity should be similar to that of the non-
Griffith’s QSL. A whole range of other measurements
should be possible to study scaling properties at the
quantum critical point terminating the QSL phase. Our
results may also be applicable to Pr2Zr2O7, in which ran-
dom crystal field splittings have already been observed
[12, 31]. A slowly varying texture of the random fields
hi, implicated there, does not reduce the stabilization
of the QSL, which, as discussed above, even occurs for
constant, non-random hi = h.
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