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We present a novel mechanism of s−wave pairing in Fe-based superconductors. The mechanism
involves holes near dxz/dyz pockets only and is applicable primarily to strongly hole doped materials.
We argue that as long as the renormalized Hund’s coupling J exceeds the renormalized inter-orbital
Hubbard repulsion U ′, any finite spin-orbit coupling gives rise to s-wave superconductivity. This
holds even at weak coupling and regardless of the strength of the intra-orbital Hubbard repulsion
U . The transition temperature grows as the hole density decreases. The pairing gaps are four-fold
symmetric, but anisotropic, with the possibility of eight accidental nodes along the larger pocket.
The resulting state is consistent with the experiments on KFe2As2.

PACS numbers:

Introduction. The pairing mechanism in iron-based
superconductors (FeSCs) remains the subject of intense
debates [1]. A common scenario is that superconductiv-
ity (SC) is mediated by anti-ferromagnetic spin fluctua-
tions, which are enhanced by the presence Fermi pock-
ets of both hole and electron type [1, 2]. This scenario
yields an s−wave pairing amplitude with opposite sign
on hole and electron pockets. Such an s+− gap struc-
ture is consistent with experiments on moderately doped
FeSCs, which contain hole and electron pockets.

However, SC is also observed in strongly doped FeSCs
with only hole or only electron pockets [3, 4]. For these
systems, it is not clear why spin fluctuations should be
strong enough to overcome Coulomb repulsion.

In this paper we focus on the systems with only hole
pockets, such as KxBa1−xFe2As2. For KFe2As2, angle-
resolve photoemission (ARPES) experiments show that
only hole pockets are present [3, 4]. Yet, Tc ≈ 3K in
KFe2As2 and increases as x decreases. The electronic
structure of KFe2As2 consists of three hole pockets cen-
tered at Γ and hole “barrels” near M = (π, π) in the
Brillouin zone corresponding to a single Fe-As layer with
two Fe atoms per primitive unit cell. The inner and the
middle pockets at Γ are made predominantly out of dxz
and dyz orbitals [2] with, potentially, some admixture of
d3z2−r2 orbital [4, 5], while the outer pocket is predomi-
nantly made out of dxy orbital.

There is no consensus at the moment among both ex-
perimentalists and theorists about the pairing symme-
try in KFe2As2. On the one hand, non-phase-sensitive
measurements on KFe2As2, such as thermal conductiv-
ity and Raman scattering, were interpreted as evidence
for a d−wave gap [6, 7]. On the other, laser ARPES re-
ported full gap along the inner hole Fermi surface (FS),
eight nodes along the middle FS, and negligible gap along
the outer (dxy) pocket [4]. This was interpreted as evi-
dence of s−wave pairing [4, 9]. Specific heat data [8] on
KFe2As2 were also interpreted in favor of s−wave with
multiple gaps.

Existing theoretical proposals for superconductivity in
KFe2As2 explore the idea that the origin of the pairing
in this system is the same as in FeSCs with hole and
electron pockets, i.e., that the pairing is promoted by
magnetic fluctuations. This mechanism has been ana-
lyzed within RPA [10, 11] and within the renormaliza-
tion group (RG) [12]. The outcome is that, depending on
parameters, spin fluctuations either favor s+− SC with
the gap changing sign between the inner and the mid-
dle dxz/dyz pockets [10, 11], or d−wave SC with the gap
predominantly residing on the outer dxy pocket [12]

Each scenario has a potential to explain superconduc-
tivity in KFe2As2, but the key shortcoming of both is that
s−wave and the d−wave attractions are very weak [11]
because the mechanism is essentially of Kohn-Luttinger
type [13]. Additionally, the d−wave pairing scenario
yields the largest gap on the largest hole pocket, which
is inconsistent with laser ARPES [4].

In this paper we propose a new mechanism for SC
in KFe2As2 and other materials with only hole pock-
ets. Consistent with laser ARPES[4], we assume that
the pairing involves mainly fermions near the inner and
the middle hole pockets (see Fig.1), and neglect the hole
barrels near (π, π) and the outer hole pocket, where the
observed pairing gap is much smaller. We focus on 2D
physics and neglect the contribution from d3z2−r2 orbital,
inferred from the observed 3D variation of the middle
hole pocket [4, 5]. The pairing in our theory arises from
the combination of two factors: sizable Hund’s electron-
electron interaction J and sizable spin-orbit coupling
(SOC) λ. Specifically, we argue that the system devel-
ops an s−wave SC as soon as the renormalized J exceeds
the renormalized inter-orbital Hubbard repulsion U ′, re-
gardless of the value of the intra-orbital Hubbard repul-
sion U . The effective dimensionless coupling constant in

the s−wave pairing channel scales as N0(J − U ′)
(

λ
µ

)2

,

where N0 is the density of states and µ is the chemical
potential. That J is substantial has been discussed in
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FIG. 1: Left panel: Illustrative Fermi surfaces (FS) for the
dxz/dyz hole pockets, where k0 =

√
2mµ. In the SC state, the

pairing amplitude on the outer Fermi surface is ∆+ and on the
inner ∆−. Right panel: Schematic quasiparticle dispersion in
the superconducting state (solid black lines). The gap away
from the Fermi level is due to the A2g pairing and is present
already without SOC. Once SOC is included, the gaps on
the FS appear. The dashed lines are approximations which
capture the gaps on the FS only.

the context of “Hund metal” [14, 15]. At the bare (lo-
cal) level, U ′ > J [14, 16], but the ratio J/U ′ is energy
dependent, and we assume that J/U ′ > 1 at low ener-
gies, relevant to the pairing. The magnitude of λ is also
quite sizable in FeSCs. ARPES measurements (Ref.[17])
extracted λ ∼ 10− 20meV, comparable to µ.

Without SOC, the Cooper states at zero momentum
can be classified according to their behavior separately
under the crystal’s point group operations and under spin
SU(2) rotations. As such, the on-site Hubbard-Hund in-
teraction with U > U ′, J is repulsive in the s-wave (A1g)
and d−wave (B1g and B2g) spin singlet channels. The in-
teraction in the A2g spin-triplet channel, however, avoids
U and is 1

2
(U ′−J), i.e., it is attractive when J > U ′ [18].

By itself, an attraction in the A2g channel does not nec-
essarily lead to the Cooper instability because the pair-
ing occurs between fermions from different bands and the
pairing susceptibility is not logarithmically large at small
temperature, T . Besides, A2g pairing does not open gaps
on the Fermi surfaces (see Fig.1). The situation changes
when λ 6= 0 because SOC mixes the A1g spin singlet and
the A2g spin triplet pairs [20]. The pairing susceptibility
in A1g channel diverges as logT at small T because the
order parameter contains fermion pairs from the same
band. We argue that s−wave superconductivity emerges
as soon as J > U ′. Remarkably, this conclusion is unaf-
fected by the presence of a much stronger U despite the
fact that the U determines the repulsion in the A1g spin
singlet channel.

The gaps on the two hole pockets are four-fold symmet-
ric, but anisotropic. The solution of the self-consistency
equations shows that the overall gap on the larger FS is
smaller, in part, due to destructive interference between
the A1g and the A2g components. For some range of
parameters, the gap on this pocket has eight accidental

nodes, as shown in the Fig.3. The relative magnitude
of the A1g and the A2g components does not contain
logT , nevertheless, their ratio has a non-trivial temper-
ature (T ) dependence even at weak coupling. This may
lead to a possibility that such accidental nodes appear
only below some T < Tc.
Our results are summarized in Figs.2 and 3. We argue

below that they are consistent with several experimental
findings on KxBa1−xFe2As2 for x ≈ 1.
The model. We consider the itinerant model

with two Γ-centered hole pockets made out of dxz and
dyz orbitals (see Fig. 1). The effective Hamiltonian
H = H0 + Hint for the low-energy states near Γ can
be obtained, quite generally, using the method of invari-
ants [20, 21], without the need to assume a particular mi-
croscopic model. The non-interacting part of the Hamil-
tonian, describing dxz/dyz hole pockets, is

H0 =
∑

k

∑

α,β=↑,↓

ψ†
k,α

(

hkδαβ + hSOszαβ
)

ψk,β, (1)

where the doublet ψ†
k,σ =

(

d†yz,σ(k),−d
†
xz,σ(k)

)

, sz is the
Pauli matrix, and

hk =

(

µ− k
2

2m
+ bkxky c

(

k2x − k2y
)

c
(

k2x − k2y
)

µ− k
2

2m
− bkxky

)

, (2)

hSO = λ

(

0 −i
i 0

)

. (3)

The coefficients µ,m, b, c, and the SOC λ are material
specific, but the forms of hk and hSO are universal.
The 4-fermion interaction Hamiltonian can also be

written out in terms of the low energy doublet. Assuming
spin SU(2) symmetry we can express Hint as

Hint =

3
∑

j=0

gj
2

ˆ

d2r :ψ†
σ(r)τjψσ(r)ψ

†
σ′ (r)τjψσ′(r) :,(4)

where :: implies normal ordering, the repeated spin in-
dices σ, σ′ are summed over, τ0 = 1 and the three
Pauli matrices τj act on the two components of the dou-
blet. The four couplings gj can be parameterized in
terms of effective Hubbard-Hund interactions U,U ′, J, J ′

as g0 = 1

2
(U + U ′), g1 = 1

2
(J + J ′), g2 = 1

2
(J − J ′),

and g3 = 1

2
(U − U ′). We emphasize that gi’s include

renormalizations from high energy modes and the effec-
tive U , U ′, J , and J ′ are not the same as the bare (local)
Hubbard and Hund’s interaction terms. We keep renor-
malized interaction local because relevant fermions are
near hole pockets, and corresponding (akF )

2, which set
the momentum dependence of the interactions, are small
(a is interatomic spacing).
For λ = 0, the pairing can be decomposed into spin

singlet A1g, B1g, and B2g channels, as well as the spin
triplet A2g. The corresponding couplings are [20, 22]
gA1g

= g̃0 = (U +J ′)/2, gB1g
= (U −J ′)/2, gB2g

= (U ′+

J)/2, and gA2g
= g̃2 = 1

2
(g0 − g1 − g2 − g3) = (U ′ −
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FIG. 2: The phase diagram at T = 0 calculated at a fixed ratio
of the SOC λ to Fermi energy µ. Displayed are the boundaries
of the nodal region, which depend on the ratio of A2g (∆2) and
A1g (∆0) components of the pairing gap at T = 0. They also
depend on p0 and p1, dimensionless parameters which enter
into the angle dependence of the normal state band dispersion
as in Eqs.(9) and (10). (p0 is a measure of the off-diagonal
orbital hopping, while p1 is a measure of the anisotropy of
the diagonal hopping). The pairing amplitudes on the larger

and the smaller Fermi surfaces are ∆+ = ∆0 + (λ/| ~Bk|)∆2

and ∆− = ∆0 − (λ/| ~Bk|)∆2, respectively; 2| ~Bk| is the energy
of the band splitting (9). Shaded area marks the appearance
of the accidental nodes in ∆+ for p1 = 0.25. For a different
value of p1, the upper boundary of the shaded area shifts to
the corresponding dashed line, while the lower boundary is
p1-independent. Below (above) the shaded region, the signs
of ∆+ and ∆− are opposite (same) and the pairing state can
be viewed as s+− (s++). Interestingly, numerical solutions of
the self-consistency equations find that it is possible to start
outside of the nodal region at Tc (red and orange circles) and
end up inside of it at T = 0 (black and blue circles).

J)/2. The interactions in A1g, B1g, and B2g channels
are repulsive as the intra orbital Hubbard U is the largest
local interaction. However the interaction in A2g channel
is attractive if J > U ′. We assume this to hold. The
A2g order parameter is

∆2 =
1

2
g̃2〈ψ

T
α (r)τ2(is

zsy)αβψβ(r)〉. (5)

Because τ2 is antisymmetric and iszsy is symmetric, this
order parameter is spin triplet. For λ = 0, ∆2 in the
band basis is composed entirely of fermions from different
pockets. The susceptibility for such inter-pocket pairing
does not contain the Cooper logarithm, and hence the at-
traction in A2g channel alone does not give rise to Cooper
pairing, at least at weak coupling. However, in the pres-
ence of the SOC, an arbitrarily weak A2g attraction gives
rise to a pairing instability, as we now show.
Role of SOC. For λ 6= 0, the A1g and the A2g chan-

nel in Eq.(5) mix[20]. Nevertheless, the A−channels and
the B−channels remain decoupled. We focus on the
A1g channels because of the attraction in A2g. Due to
A2g/A1g mixing, the order parameter ∆2 receives a con-
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FIG. 3: Angle dependence of the gap at T = 0 on the inner
(a) and the outer (b) hole Fermi surfaces (FS) for parame-
ters corresponding to the (black) end point of the down (red)
arrow in Fig.2. (c) and (d) show the same but for the param-
eters corresponding to the (blue) end point of the up (orange)
arrow in Fig.2. In both cases, there are eight nodal points on
the outer FS.

tribution from fermions residing in the same band. The
corresponding normal state pairing susceptibility is loga-
rithmically large at small T . There is a caveat, however –
the spin singlet A1g pairing component is strongly repul-
sive. Our goal is to analyze whether it prevents pairing
when g̃2 < 0. To this end, we also introduce the conven-
tional spin singlet A1g order parameter,

∆0 =
1

2
g̃0〈ψ

T
α (r)1(−is

y)αβψβ(r)〉, (6)

and obtain the set of two coupled equations for ∆2 and
∆0 (Ref. [23]). At Tc, we have for g̃2 < 0 and g̃0 > 0

−
∆0

g̃0
=
∑

ρ=±

ˆ

d2k

(2π)2
tanh

ξρ
2Tc

2ξρ

(

∆0 + ρ∆2

λ

| ~Bk|

)

, (7)

−
∆2

g̃2
=
∑

ρ=±

ˆ

d2k

(2π)2
1

2ξρ
tanh

ξρ
2Tc

× (8)

×

(

∆2

(

λ2

~B2
k

+
ξρ
Ak

(

1−
λ2

~B2
k

))

+ ρ∆0

λ

| ~Bk|

)

,

where the normal state band dispersion has the form

ξ± = Ak ± | ~Bk| = µ−
k2

2m
±

√

Rθ

k4

4m2
+ λ2. (9)

The angular anisotropy in momentum space enters via
0 < Rθ < 1, and is determined by the coefficients b and
c in Eq.(2). We express it as

Rθ = p0

(

1

2
+ p1 +

(

1

2
− p1

)

cos 4θ

)

, (10)



with p0 = 4m2c2 and p1 = b2/(8c2). Without loss of
generality, we may set 0 < p0 < 1 and 0 < p1 <

1

2
(Ref.

[24]). The Fermi surfaces shown in Fig.(1) correspond to
p0 = 0.5, p1 = 0.4, and λ/µ = 0.1. Eqs. (7-8) have the
form
(

− 1

g̃0
− χ00(Tc) −χ02(Tc)

−χ02(Tc) − 1

g̃2
− χ22(Tc)

)(

∆0(Tc)
∆2(Tc)

)

= 0.

(11)

Therefore, Tc is determined from requiring that the de-
terminant vanishes

−
1

g̃2
+

χ2
02(Tc)

1

g̃0
+ χ00(Tc)

= χ22(Tc). (12)

Brief inspection of (7-8) reveals that χ00 and χ22 scale as
∼ ln 1

T
. On the other hand, χ02(T ) remains finite due to

an exact cancellation of two such logs. For µ ≫ Tc, we
find

χ02(Tc) =
m

2π

λ

µ

ˆ 2π

0

dθ

2π

tanh−1
√

Rθ + (1 −Rθ)
λ2

µ2

√

Rθ + (1−Rθ)
λ2

µ2

,

(13)
where tanh−1 x = 1

2
ln 1+x

1−x
. As a result, Tc is finite re-

gardless of how weak is the attractive coupling, g̃2 < 0,
and how strong is the repulsive coupling g̃0 > 0. More-
over, χ02(Tc)λ/µ is positive. From the gap equations we
then find that ∆0(Tc) = −C∆2(Tc)λ/µ, where C > 0.
The gaps on the two pockets are

∆± = ∆0 ±
λ

| ~Bk|
∆2, (14)

where ∆+ is on the larger and ∆− is on on the smaller
pocket. Analyzing the forms of these gaps, we find that
(i) |∆+| is reduced relative to |∆−|, (ii) the gaps are four-
fold symmetric, but anisotropic, and (iii) for small |g̃2|,
∆0 is small compared to ∆2, forcing opposite signs of ∆+

and ∆−, i.e. s
+− gap structure.

Below Tc. The mean field equations below Tc are
non-linear in ∆0(T ) and ∆2(T ). We eliminate the cou-
plings g̃0 and g̃2 by expressing ∆0 and ∆2 in units of
Tc. Solving the non-linear set we obtain ∆0,2(T )/Tc and
the ratio K(T ) = ∆0(T )/∆2(T ) in terms of the same
ratio at Tc. In a general case, when the cross term
χ0,2 is non-logarithmic, K(T ) remains the same as at
Tc, at least at weak coupling. In our case, the situa-
tion is different because a finite χ02(T ) is due to sub-
tle cancellation of the logs, and leftover terms are T -
dependent. In the limit of K(Tc) ≪ 1 we found analyt-
ically K(T = 0) = K(Tc)(1 + A), where A > 0 (Ref.
[23]). This also holds in the numerical solution of the
mean-field equation, as indicated by the lower arrow in
the Fig.2.
The numerical solutions of the gap equations are shown

in the Fig. 3. We see that in some range of parameters,
the gap on the larger hole pocket has eight accidental

nodes. Interestingly, as shown in the Fig.2, we also found
that over some range of parameters the nodes are absent
at Tc, but appear at T = 0.

Comparison with experiments. Our results
are consistent with several experimental findings on
KxBa1−xFe2As2 for x ≈ 1. Namely, (i) a larger gap
on the inner hole pocket at Γ, with no nodes, (ii) a
smaller gap magnitude and the appearance of the acci-
dental nodes on the larger dxz/dyz pocket (middle pocket
at Γ), and (iii) angular correlation of the gap maxima on
the two FSs are all consistent with the ARPES results [4].
The presence of the gap nodes is consistent with thermal
conductivity and Raman scattering measurements [6, 7],
and the near-absence of the gap on the dxy pocket is
consistent with ARPES [4] and specific heat measure-
ments [8]. We also analyzed the temperature dependence
of the the spin susceptibility χ(T ) by adding a Zeeman
coupling to H. We found that χ(T ) decreases below Tc
for any orientation of the external magnetic field, even
if ∆0 is negligible compared to ∆2. This result is non-
trivial because for λ = 0 the pairing was in A2g spin-
triplet channel, and χ(T ) was not suppressed below Tc
when the magnetic field is perpendicular to the triplet
d-vector. The decrease of χ(T ) for any orientation of the
magnetic field is consistent with the Knight shift mea-
surements in KFe2As2 (Ref. [25]). Finally, from Eq.(8)
we readily see that the prefactor of the Cooper logarithm
in χ22(Tc) contains a factor of λ2/µ2. Therefore Tc in-

creases as µ decreases, for fixed g̃0,2 and fixed λ. The
increase of Tc with decreasing x is consistent with the x
dependence of Tc in KxBa1−xFe2As2 at x ≤ 1.

Conclusions. In this paper we presented a novel
mechanism of s−wave pairing in FeSC, which involves
fermions near dxz/dyz hole pockets. When the renor-
malized Hund’s interaction J exceeds the renormalized
inter-orbital Hubbard repulsion U ′, the interaction in A2g

channel is attractive. In the absence of SOC; this attrac-
tion would potentially give rise to spin-triplet supercon-
ductivity, but only when the attractive coupling exceeds
a certain threshold. We argued that at a non-zero SOC,
the same interaction gives an attraction in the s-wave
channel, where the pairing condensate involves fermions
from the same band and superconductivity emerges at an
arbitrarily weak attraction. We demonstrated that Tc is
only weakly affected by the large inter-orbital repulsion U
in the A1g channel, despite the fact that the SOC mixes
the A2g and the A1g components. The gap functions are
four-fold symmetric, but anisotropic, particularly on the
larger FS, where over some range of parameters the gap
has accidental nodes. Our results are consistent with
ARPES and other experiments on strongly hole doped
KxBa1−xFe2As2.
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