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Bilayer transition metal dichalcogenides (TMDs) belong to a class of materials with two unique features,

the coupled spin-valley-layer degrees of freedom and the crystal structure that is globally centrosymmetric

but locally non-centrosymmetric. In this work, we will show that the combination of these two features can

lead to a rich phase diagram for unconventional superconductivity, including intra-layer and inter-layer singlet

pairings and inter-layer triplet pairings, in bilayer superconducting TMDs. In particular, we predict that the

inhomogeneous Fulde-Ferrell-Larkin-Ovchinnikov state can exist in bilayer TMDs under an in-plane magnetic

field. We also discuss the experimental relevance of our results and possible experimental signatures.

PACS numbers: 74.20.-z, 74.78.-w, 74.25.Dw

Introduction.– Unconventional superconductivity [1–3],

which is beyond the simple s-wave spin-singlet superconduc-

tivity in the Bardeen-Cooper-Schrieffer theory, can emerge

in two dimensional (2D) systems, such as surfaces [4–6] or

interfaces [7], superconducting heterostructures [8] and 2D

or quasi-2D superconducting materials [9–14]. Recently, it

was demonstrated that ”Ising” superconductivity can exist in

monolayer transition metal dichalcogenides (TMDs), such as

MoS2 [11, 13] and NbSe2 [12], based on experimental ob-

servation that in-plane upper critical field Hc2,‖ is far beyond

the paramagnetic limit. The space symmetry group of the

monolayer TMD is the D3h group without inversion symme-

try. Thus, the monolayer superconducting TMDs belong to

the so-called non-centrosymmetric superconductors (SCs) [3],

for which spin-up and spin-down Fermi surfaces are split by

strong spin-orbit coupling (SOC), leading to a mixing of spin

singlet and triplet pairings [15, 16]. The existence of triplet

components can enhance Hc2,‖ in non-centrosymmetric SCs

[17]. In monolayer TMDs, Ising SOC fixes spin axis along the

out-of-plane direction and greatly reduces the Zeeman effect

of in-plane magnetic fields, thus explaining the experimental

observations of high Hc2,‖. A high Hc2,‖ was also observed

in bilayer TMDs (e.g. NbSe2) [12]. The crystal structure of

bilayer TMDs is described by the symmetry group D3d with

inversion symmetry and the corresponding Fermi surfaces are

spin degenerate. This experimental result motivates us to

study the difference between bilayer superconducting TMDs

and conventional SCs.

We first illustrate the difference from symmetry aspect.

Although inversion symmetry exists in bilayer TMDs, the

inversion center should be chosen at the center between

two layers, labeled by ”P” in Fig. 1a. As a result, bi-

layer TMDs belong to a class of materials which are glob-

ally centrosymmetric, but locally non-centrosymmetric (for

each layer). The absence of local inversion symmetry can

lead to the ”hidden” spin polarization [18, 19], the spin-

layer locking [20, 21] and other exotic physical phenomena

[22]. The superconductivity for these materials has been stud-

ied in the CeCoIn5/YbCoIn5 hybrid system [10, 23], SrPtAs

[23–26] and other bilayer Rashba systems [27]. Inhomoge-

neous Fulde-Ferrell-Larkin-Ovchinikov (FFLO) states were

proposed in CeCoIn5/YbCoIn5 hybrid system while chiral

topological d + id superconductivity was suggested in SrP-

tAs. Bilayer TMDs possess global D3d symmetry and local

D3h symmetry, labeled as D3d(D3h), and thus it is equivalent

to that of SrPtAs [25], but different from CeCoIn5/YbCoIn5

hybrid system with D3d(C3v) symmetry. Due to the D3h sym-

metry in each layer, Ising SOC is expected in bilayer TMDs

and SrPtAs, while Rashba SOC occurs in CeCoIn5/YbCoIn5

hybrid system.

In this work, we study possible superconducting pairings

based on a prototype model of bilayer TMDs. The supercon-

ducting phase diagram as a function intra-layer (U0) and inter-

layer (V0) interactions is summarized in Fig. 1c, in which

three different pairings, intra-layer A1g pairing, intra-layer A1u

pairing and inter-layer Eu pairing, can exist, depending on the

strength and sign of U0 and V0. We further study the stabil-

ity of these superconducting pairings under external magnetic

fields. In particular, we predict the FFLO state with a finite

momentum pairing [28, 29] induced by the orbital effect of

in-plane magnetic fields.

Phase diagram of bilayer TMDs – A prototype model for

TMDs [15, 16, 30] was first derived for the conduction band

of MoS2 and can also be applied to other TMDs. This model is

constructed on a triangle lattice of Mo atoms with 4dz2 orbitals

for each monolayer. The conduction band minima appear at

two momenta ±K, and one can regard ±K as valley index and

expand the tight-binding model around ±K for each layer, as

described in Ref. [15, 16]. We extend this model to bilayer

TMDs by including layer index. Let us label the annihilation

fermion operator as cσ,η, where σ =↑, ↓ is for spin and η =

± is for two layers. On the basis of (c↑,+, c↓,+, c↑,−, c↓,−), the

effective Hamiltonian is

Ĥ0(p = ǫK + k) = ξk + ǫβso szτz + tτx (1)

where s and τ are two sets of Pauli matrices for spin and layer

degrees, ǫ = ± is for valley index and ξk =
~

2

2m
k2 − µ with

chemical potential µ. Here the βso term is the Ising SOC while

the t term is the hybridization between two layers. The eigen-

energy is given by εs,λ = ξk + λD0 with D0 =
√

β2
so + t2 and

s, λ = ±. s does not appear and thus the eigen-states with

opposite s are degenerate, as shown in Fig. 1b. We next con-
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FIG. 1. (a) Crystal structure of bilayer TMDs MX2 with the inversion

center labelled by P. (b) Schematics for energy dispersion of bilayer

TMDs where red and blue are for spin up and spin down, and solid

and dashed lines are for the top and bottom layers. Here each band is

doubly degenerate and we shift the dashed lines a little for the view.

(c) The phase diagram as a function of U0 and V0. The red, blue and

green lines are the phase boundary, separating three superconducting

phases, the A1g, A1u and Eu pairings, and the metallic phase. (d)

Experimental setup of bilayer TMD SC/conventional SC junction.

sider the symmetry classification of superconducting pairings,

similar to that in Cu doped Bi2Se3 SCs [31] since both ma-

terials belong to D3d group. We only consider s-wave pair-

ing, and thus the gap function ∆̂ is independent of momentum

and can be expanded in terms of s and τ (∆̂ =
∑

i,µ ∆i,µγi,µ

where γi,µ is a 4 × 4 matrix composed of s and τ and i, µ

are the indices labelling different representations). Due to

anti-commutation relation between fermion operators, the gap

function needs to be anti-symmetric, and thus only six matri-

ces sy, syτx, syτz, τy, sxτy, szτy can couple to s-wave pairing.

The classification of these representation matrices, as well as

their explicit physical meanings, are listed in the Table I, from

which ∆A1g,1 and ∆A1u
describe intra-layer singlet pairings,

∆A1g,2 and ∆A2u
give inter-layer singlet pairings while ∆Eu ,1

and ∆Eu ,2 are inter-layer triplet pairings. The pairing inter-

action can also be decomposed into different pairing channels

as VA1g,1 = VA1u
=

U0

2
and VA1g,2 = VA2u

= VEu ,1 = VEu ,2 =
V0

2

(See appendix for details).

Possible superconducting pairings are studied based on the

linearized gap equations [1–3] (See appendix). Around the

valley K (or −K), the Fermi surfaces for two spin states in

each layer are well separated by Ising SOC βso term. There-

fore, we below assume the Fermi energy only crosses the

lower energy band at each valley (Fig. 1b), for simplicity.

The pairings with different representations do not couple to

each other and thus, we can compute the critical temperature

Tc in each representation, separately. The critical tempera-

ture normally takes the form kTc0,i =
2γωD

π
exp

(

− 1
N0Vi,e f f

)

, with

the representation index i, density of states N0, the Debye fre-

quency ωD and γ ≈ 1.77. The effective interaction is given by

TABLE I. The matrix form and the explicit phyiscal meaning of

Cooper pairs in the representations A1g, A1u, A2u and Eu of the D3d

group. Here cση is electron operator with η = ± for layer index σ for

spin. s and τ are Pauli matrices for spin and layer.

Representation Matrix form Explicit form

A1g:
∆A1g ,1

∆A1g ,2

sy

syτx

c↑+c↓+ + c↑−c↓−

c↑+c↓− + c↑−c↓+

A1u: ∆A1u
syτz c↑+c↓+ − c↑−c↓−

A2u: ∆A2u
sxτy c↑+c↓− − c↑−c↓+

Eu:
∆Eu ,1

∆Eu ,2

τy

szτy

c↑+c↑−

c↓+c↓−

VA1g,e f f = 2U0 + 2V0
t2

D2
0

for the A1g pairing, VA1u,e f f = 2U0
β2

so

D2
0

for the A1u pairing and VEu ,e f f = 2V0
β2

so

D2
0

for the Eu pairing,

from which the corresponding critical temperature in each

channel can be determined. The A2u pairing does not exist

because VA2u,e f f = 0. The phase diagram can be extracted by

comparing different Tc0,i (Fig. 1c). The A1g pairing is favored

by strong attractive intra-layer interaction (U0 > 0), while the

Eu pairing is favored by strong attractive inter-layer interac-

tion (V0 > 0). These two phases are separated by the critical

line U0 =
β2

so−t2

D2
0

V0. The A1u pairing appears when the repul-

sive inter-layer interaction is stronger than the attractive intra-

layer interaction (−V0 > U0 > 0) because repulsive inter-layer

interaction will favor opposite phases of pairing functions be-

tween two layers. The A1u phase is separated from the A1g

phase by a critical line U0 = −V0. When both U0 and V0 are

repulsive interaction (U0,V0 < 0), no superconductivity can

exist. For the 2D Eu pairing, ∆Eu ,1 and ∆Eu ,2 are degenerate.

By taking into account the fourth order term in the Landau

free energy (See Appendix), either nematic superconductiv-

ity (∆Eu ,1,∆Eu ,2) = ∆Eu
(cos θ, sin θ) (θ is a constant) [32] or

chiral superconductivity with (∆Eu ,1,∆Eu ,2) = ∆Eu
(1, i) can be

stabilized[33].

Magnetic field effect – Next we study the effect of magnetic

fields on bilayer superconducting TMDs. Generally, magnetic

fields have two effects, the Zeeman effect and the orbital ef-

fect. The Zeeman coupling is given by

ĤZee = gB · s (2)

where B labels the magnetic field and the Bohr magneton is

absorbed into g factor. The orbital effect is normally included

by replacing the momentum k in ξk with the canonical mo-

mentum π = k + e
~
A with vector potential A (Peierls substitu-

tion). The orbital effect of in-plane magnetic fields is normally

not important for a quasi-2D system. However, it is not the

case in bilayer TMDs due to its unusual band structure. Let’s

choose A = (0,−Bxz, 0) for the in-plane magnetic field Bx, in

which the origin z = 0 is located at the center between two lay-

ers. As a result, ξk is changed to ξπ =
~

2

2m
(k2

x+(ky− eBxz0

2~
τz)

2)−µ
after the substitution, where z0 is the distance between two

layers.
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The Ginzburg-Landau free energy is constructed as

L =
1

2

∑

q,iµ

∆∗i,µ(q)

(

1

Vi

δi jδµν − χ(2)

i j,µν
(q,B)

)

∆ j,ν(q) + L4, (3)

where L4 describes the fourth order term. The superconductiv-

ity susceptibility χ
(2)

i j,µν
can be expanded up to the second order

of q and B (qiq j, BiB j and qiB j with i, j = x, y, z). The mag-

netic field correction to Tc0,i for different pairings can be ex-

tracted by minimizing the above free energy (See appendix).

Due to the orbital effect, the Hamiltonian (1) is changed to

Ĥ′0 = ξk − ~vQkyτz + ǫβsoszτz + tτx, (4)

where vQ =
eBxz0

2m
and the chemical potential µ in ξk is re-

defined to include the B2
x term. We first focus on the limit

t → 0, in which the energy dispersion of the Hamiltonian (4)

is shown in Fig. 2a. The energy bands on the top and bottom

layers are shifted in the opposite directions in the momentum

space by Q = eBxz0

2~
. This momentum shift cannot be “gauged

away” and thus the intra-layer spin-singlet pairing must carry

a non-zero total momentum. This immediately suggests the

possibility of the FFLO state [28, 29, 34] for the intra-layer

singlet A1g and A1u pairings. Since in-plane magnetic fields

break the D3d symmetry, the orbital effect can mix the singlet

A1g and A1u pairings. In the limit t→ 0 with Tc0,A1g
= Tc0,A1u

=

Tc0, we derive the free energy for the coupled A1g and A1u

pairings as

L2 =
1

2

∑

q



















(

4N0ln

(

T

Tc0

)

− P(hx, q)

)

∑

i=A1g,A1u

|∆i|2

−∆∗A1g
Q∆A1u

− ∆∗A1u
Q∆A1g

]

, (5)

in which the detailed form of P and Q are defined in Ap-

pendix. The termQ = K̃Bxqy with a constant K̃ mixes A1g and

A1u pairings. With a transformation ∆± =
1√
2

(

∆A1g
± ∆A1u

)

,

the free energy is changed to

L2 =
1

2

∑

α=±,q

(

4N0ln

(

T

Tc0

)

− P(Bx, q) − αQ(Bx, q)

)

|∆α|2.(6)

The corresponding critical temperature is determined by max-

imizing ln
(

Tc

Tc0

)

= 1
4N0

(P(Bx, q) + αQ(Bx, q)) with respect to

q and α. From the explicit form of P and Q, the maxi-

mum is achieved by qx = 0 and |qy| = qc =
eBxz0

~
= 2Q,

thus realizing the FFLO state. The corresponding correc-

tion to Tc vanishes (Tc = Tc0). As a comparison, the Tc

of zero momentum pairing decreases with magnetic fields as

ln
(

Tc(q=0)

Tc0

)

= −C
(

~vQk f

2πkT

)2
∝ −B2

x and the FFLO state is always

favored in the limit t → 0 for in-plane magnetic fields.

The form of the stable pairing function depends on the sign

of Q. Let’s assume Bx > 0 and K̃ > 0 in Q = K̃Bxqy. If qy =

qc > 0, Q > 0 and thus ∆+ pairing is favored. If qy = −qc < 0,

Q < 0 and ∆− is favored. ∆+(qc) and ∆−(−qc) are degenerate

for the second order term of free energy. The FFLO state in

the real space is

∆(r) = ∆+(qc)e
iqcy + ∆−(−qc)e

−iqcy. (7)

The exact form of pairing function is determined by the fourth

order term of ∆+(qc) and ∆−(−qc), which is phenomenologi-

cally given by

L4 = Bs

(

|∆+(qc)|2 + |∆−(−qc)|2
)2
+ Ba

(

|∆+(qc)|2 − |∆−(−qc)|2
)2
.

(8)

If Ba > 0, we need |∆+(qc)| = |∆−(−qc)| = ∆0 to minimize

L4. This state is known as LO phase [28, 35] or stripe phase

[4, 6, 8, 36] or pair density wave [10, 37, 38]. If Ba < 0,

we have either ∆+(qc) = 0 or ∆−(−qc) = 0. In either case,

the amplitude of ∆(r) is fixed while its phase oscillates, thus

correponding to FF phase [29, 35] or helical phase [3, 36, 39–

41]. In the limit t → 0, the coefficients are computed as Bs =

Ba =
7N0ζ(3)

16(πkTc0)2 > 0. Therefore, the stripe phase will be favored

under an in-plane magnetic field near the critical temperature.

In the limit t → 0, ∆+ and ∆− are just the singlet pairing

on the top and bottom layers according to Table I, and the free

energies for ∆+ and ∆− become decoupled (see Eq. (6) for

L2 term and Eq. (96) of the appendix for L4 term). Thus,

the FFLO state in Eq. (7) can be viewed as two indepen-

dent helical phases in two separate layers. No supercurrent

or other observables can exist in helical phases [39, 40] for in-

finite large systems. To identify this phase, one needs to con-

sider a Josephson junction structure between bilayer TMDs

and conventional SCs (Fig. 1d), similar to that discussed in

Ref. [3, 40, 42] (See appendix for details). For a finite tun-

neling t, the interference between two layers leads to the gap

oscillation of stripe phase in Eq. (7).

We notice that the FFLO phase has been proposed in non-

centrosymmetric SCs under a magnetic field [6, 23], and em-

phasize two essential differences between our case and non-

centrosymmetric SCs. (1) In non-centrosymmetric SCs, the

FFLO phase is induced by a linear gradient term K̃i j∆
∗Biq j∆

(K̃i j is a parameter) that breaks inversion symmetry. In con-

trast, inversion symmetry is preserved in our system, and the

linear gradient term (K̃i j∆
∗
A1g

Biq j∆A1u
) couples two pairings

with opposite parities. (2) In non-centrosymmetric SCs, the

FFLO phase results from the combination of Rashba SOC and

Zeeman effect of magnetic fields. In our system, the FFLO

phase is from the combination of Ising SOC and the orbital

effect of magnetic fields. In particular, this phase can occur

for any magnetic field strength in the weak interlayer coupling

limit t → 0.

When t , 0, the occurence of the FFLO phase will be

shifted to a finite magnetic field. We numerically minimize

free energy with respect to the momentum q and calculate the

magnetic field correction to Tc. In Fig. 2b, Tc/Tc0 is plotted

as a function of magnetic field Bx for three hybridization pa-

rameters t. The momenta for the corresponding stable states,

labeled by qc, are shown in Fig. 2c. For a weak hybridization

(t = 1meV≪ βso = 40meV), FFLO phase appears at a small

Bx, and the corresponding qc approaches 2Q with increas-

ing Bx. There is only a weak correction to Tc for the FFLO

phase (black line in Fig. 2b). When increasing hybridization

(t = 5, 10meV), zero momentum pairing is favored for small
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FIG. 2. (a) Schematics of energy dispersion for bilayer TMDs with

an in-plane magnetic field. Here red and blue colors are for opposite

spins and solid and dashed lines are for top and bottom layers. (b)

The magnetic field dependence of the critical temperature Tc. Here

the black line is for t = 1meV , the red is for t = 5meV while the

blue is for t = 10meV . Other parameters are chosen as βso = 40meV ,

~vF = 30meV ·nm and m = 0.6me with electron mass me, N0U0 = 0.3

and N0V0 = 0.1. Only the orbital effect is taken into account. (c) The

momentum qc for the stable pairing state as a function of Bx. (d)

Phase diagram as a function of Bx and Tc. Here I is for conventional

SC phase, II is for FFLO state and III is for normal metal. BN =
2kTc0

v f z0
.

Bx and lead to a rapid decrease of Tc with its correction given

by Tc−Tc0

Tc0
∝ −B2

x (red and blue lines in Fig. 2b). When Bx

becomes larger, a transition from zero momentum pairing to

the FFLO state occurs. The decreasing in Tc deviates from the

B2
x dependence and becomes weaker. Experimentally, one can

control the hybridization between two layers by inserting an

insulating layer in between, and the deviation of the Tc correc-

tion from the B2
x dependence implies the occurrence of FFLO

states in this system. We further construct the phase diagram

by evaluating gap functions as a function of temperatures and

magnetic fields for t = 10meV in Fig. 2d. As discussed in

appendix, The transition from the normal metal (III region in

Fig. 2d) to uniform SC (I region) or FFLO state (II region) is

of the second order type (dashed red line in Fig. 2d) while the

transition between uniform SC and FFLO state is of the first

order type (dashed black line in Fig. 2d).

Besides the orbital effect, the correction of Tc due to the

Zeeman effect, which is the same for zero-momentum pairing

and the FFLO phase, is given by ln

(

Tc,A1g

Tc0,A1g

)

∝ − t2

β2
so

B2
x for A1g

pairing and ln

(

Tc,A1g

Tc0,A1g

)

∝ − t4

β4
so

B2
x for A1u pairing. Additional

factors t2/β2
so and t4/β4

so greatly reduce the B2
x dependence for

the A1g and A1u pairings in the limit t ≪ βso. The behavior of

out-of-plane magnetic field (Bz) in bilayer TMDs is similar to

that of conventional SCs (See Appendix).

Discussion and Conclusion – In realistic bilayer supercon-

ducting TMDs, the Fermi energy will cross both spin states in

each layer. However, once the Ising SOC is larger than other

energy scales (βso ≫ t, ~k f vQ, ~v f q), the Fermi surfaces for

two spin states in one layer are well separated and the physics

discussed here should be valid qualitatively. Based on the ex-

isting experiments, the A1g pairing is mostly likely to exist at

a zero magnetic field. In this case, we predict the occurence of

the FFLO phase under an in-plane magnetic field. The onset

magnetic field is determined by the ratio between inter-layer

hybridization t and Ising SOC βso ( t
βso
∼ 0.27 in NbSe2) [12].

Our results suggest a weak correction to Tc for both the or-

bital and Zeeman effects of in-plane magnetic fields, thus con-

sistent with experimental observations of high in-plane criti-

cal fields in bilayer superconducting TMDs [12]. The central

physics in this work originates from the unique crystal sym-

metry property, and similar physics can occur in SrPtAs [25].

Similar physics also occurring for exciton condensate in a bi-

layer system [43, 44]. Our work paves a new avenue to search

for unconventional superconductivity in 2D centrosymmetric

SCs.
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