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We observe non-monotonic aging and memory effects, two hallmarks of glassy dynamics, in two
disordered mechanical systems: crumpled thin sheets and elastic foams. Under fixed compression,
both systems exhibit monotonic non-exponential relaxation. However, when after a certain waiting
time the compression is partially reduced, both systems exhibit a non-monotonic response: the
normal force first increases over many minutes or even hours until reaching a peak value, and only
then relaxation is resumed. The peak-time scales linearly with the waiting time, indicating that these
systems retain long-lasting memory of previous conditions. Our results and the measured scaling
relations are in good agreement with a theoretical model recently used to describe observations
of monotonic aging in several glassy systems, suggesting that the non-monotonic behavior may be
generic and that a-thermal systems can show genuine glassy behavior.

Many disordered systems exhibit phenomenologically
similar slow relaxation dynamics that may span many
time scales - from fractions of a second to days and even
years. Examples range from time-dependent resistivity
in disordered conductors [1–5], flux creep in supercon-
ductors [6, 7], dynamics of spin glasses [8–11], structural
relaxation of colloidal glasses [12, 13], time-dependence
of the static coefficient of friction [14–16], thermal expan-
sion of polymers [17, 18], compaction in agitated granu-
lar systems [19], and crumpling of thin sheets under load
[20, 21]. The ubiquity of slow relaxation phenomena sug-
gests the existence of common underlying physical prin-
ciples [22–28]. However, as slow relaxation is usually a
smooth featureless process, it is hard to discern between
the different descriptions using experiments. One way
of probing deeper into the time dependent properties of
glassy systems is using a phenomenon known as aging,
where the manner in which the system relaxes towards
equlibrium depends on its history.

In this Letter, we report non-monotonic aging dy-
namics that give rise to a maximum in the relaxation
curve. This extremum provides an unambiguous signa-
ture of aging and memory, as well as a clear, measurable
time-scale. We experimentally study two distinct dis-
ordered mechanical systems: crumpled thin sheets and
elastic foams, shown in Fig. 1. When compressed, both
systems exhibit monotonic, slow stress relaxation (Fig.
1b,e). When the compression is decreased after a certain
waiting time, the stress evolution remarkably becomes
non-monotonic: under constant compression, the mea-
sured normal force first increases slowly over seconds to
hours, reaches a well-defined peak, and then reverses to a
renewed slow relaxation (Fig. 1c,f). In both systems, the
stress peak-time is linear in the waiting time, indicating
that the different systems carry a similar, long-lasting
memory of previous mechanical states. These observa-
tions are inconsistent with the single-parameter model
used to explain logarithmic relaxation in crumpled sheets
[21], yet are in agreement with a different phenomenolog-
ical framework, successfully used recently to define a new

universality class related to the generic behavior of aging
in several glassy systems [28].

Slow relaxation and aging experiments are performed
in a custom uniaxial compression tester. Samples are
compressed between two parallel plates, separated by a
gap, H, which is set by a motorized stage. The com-
pressive normal force, FN , is monitored using an S-beam
load cell (Futek LSB200) acquired at 24 kHz. We mea-
sure the stress relaxation behavior of thin Mylar sheets,
33cm×33cm×15µm, crumpled into a ball, as shown in
Fig. 1a. Samples are placed between the plates of the
apparatus, separated by an initial gap of H1. The gap
is then reduced to H2 < H1 and is held constant for
the rest of the experiment. Under these conditions the
crumpled sheets exhibit logarithmic stress relaxation, as
shown for a typical example in Fig. 1b. Such behavior
was observed by Matan et. al. [21] and later by others
[29]. Similar slow relaxations spanning several decades
in time are exhibited by samples of elastic foam: dense
open-cell porous materials made of elastic PVC, 18mm
in height and 10mm in diameter, shown in Fig. 1d.

We perform a comprehensive set of stress relaxation
tests on both materials, keeping H1 constant and mea-
suring relaxation curves for different compressions δ =
H1−H2. For crumpled Mylar we quantify the relaxation
by fitting the curve to FN (t) = a + b · log(t). Here, a
is related to the normal force measured one second after
the compression and b is the logarithmic relaxation rate.
Typically, for larger compression steps both a and b are
larger. However, as reported in previous work on relax-
ation in crumpled sheets [21], we find that the relaxation
curves fluctuate strongly between runs and no systematic
relation appears between δ, a and b. This irreproducibil-
ity hampers any attempt to quantify the slow relaxation
and the more subtle aging behavior reported below. To
this end, we identify an experimental procedure in which
the randomly crumpled sheets are ”trained” before the
experiments, and as a result yield reproducible behav-
ior. First, new sheets of Mylar are repeatedly crumpled,
opened and flattened. To achieve the same maximum
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FIG. 1. Two disordered mechanical systems. (a) The network
of creases decorating a crumpled sheet of Mylar. Inset: a
crumpled Mylar ball. (b) Stress relaxation of the crumpled
ball with H1 = 45mm, δ = H1−H2 = 5mm. The dashed line
is a fit to a logarithmic decay. (c) Non-monotonic relaxation of
crumpled Mylar, initially compressed by δ = 5mm for tw, and
then released by ∆ = 2mm. (d) Typical microscopic image of
the cross-section of an PVC foam. Inset: elastic foam samples.
(e) Stress relaxation of elastic foam with H1 = 18mm and δ =
4mm. The dashed line is a fit to F = a+b·log(t)+c·log(t+t0).
Inset: t0 vs δ. (f) Non-monotonic relaxation for elastic foam
with δ = 3mm and ∆ = 1.5mm.

compaction during training, the sheets were always crum-
pled into a cylinder, 65mm in diameter and 35mm in
height. After at least 30 iterations, additional crumpling
of the sheet creates very few new creases [30]. Second, be-
fore each experiment we perform a quick compression and
release of the crumpled ball. Finally, H1 = 45mm is used
for the crumpled sheets, as we found it to be the maxi-
mal gap beyond which the crumpled ball could slip out of
the apparatus. the normal force measured after training,
which we denote as F1, is approximately 0.5 Newton in
all experiments. The corresponding relaxation rate, how-
ever, is negligible (see Figure 2a). The elastic foams do
not require any support, thus here H1 is the height of the
sample. The value for maximum compression H2 = 5mm
for the crumpled sheet and H2 = 3mm for the elastic
foams, was chosen such that the experiments remain in

the linear strain-stress regime. For higher compressions
we observed a transition in to a power-law dependence
[21, 31–33]. Under these conditions we observe repro-
ducible logarithmic relaxation curves, as shown in Fig.
2a. In particular we find a linear relation between b and
F (1s) that is offset by F1. The elastic foams require no
training; measurements are reproducible as long as the
sample is allowed to relax back to its original state be-
tween tests. Here the relaxation curves for all compres-
sions δ can be fitted to a double-logarithmic function of
the form FN = a+b·log(t)+c·log(t+t0). b and c are pro-
portional to δ while the ratio between them remains ap-
proximately constant over all the relaxation curves. The
inherent time scale t0 shows a linear dependence on δ, as
shown in the inset of Fig. 1e.

The reproducible relation between the compression δ
and the relaxation rate enables a systematic investiga-
tion of the more subtle aging and memory effects which
are observed after a sequence of compressions. Usually,
the notion of aging implicitly assumes a slow monotonic
process; however, in both systems we find that a two-step
compression protocol results in non-monotonic aging dy-
namics and memory effects. Here, a sample is placed
between the two plates of the apparatus, separated by
a gap H1; the gap is then decreased to H2 < H1, and
held constant for a specific waiting time, tw. During this
first step, the normal force monotonically decreases. At
t = tw, the gap between the plates is increased to H3

such that H2 < H3 < H1, and held constant for rest of
the experiment. The subsequent dynamics separate into
three distinct stages. First, during the gap increase from
H2 to H3, FN shifts abruptly to a lower value due to an
elastic response of the samples. Subsequently, in contrast
to the naive expectation that FN should now decrease at
a logarithmic rate that corresponds to the new compres-
sion, the normal force exhibits a slow, non-monotonic

FIG. 2. Reproducible stress relaxation. (a) crumpled Mylar:
The relaxation rate b vs the normal force at t = 1s, F (t =
1s) = a. The different symbols represent experiments pre-
formed with different values of δ. The normal force for which
b = 0 is marked as F1 (dotted blue line). (b) Same as (a) for
elastic foams, where here FN (t = 1s) = a+c·log(t0+1) and we
fit each relaxation curve to FN (t) = a+b·log(t)+c·log(t+t0).
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FIG. 3. Memory effect. Linear scaling between the peak
time and the waiting time for different values of ∆, shown for
crumpled thin sheets (a), and for elastic foams (b). Insets:
peak time vs H1 −H3 for tw = 20s.

behavior. Under constant external conditions, FN first
slowly increases over many minutes and even hours. FN
reaches a well-defined force peak at a time tp, after which,
for t > tp, FN crosses back to a slow decay. Very similar
non-monotonic dynamics are measured for both systems,
as shown for crumpled Mylar sheets in Fig. 1c and elas-
tic foams in Fig. 1f. We note that these systems also
show non-monotonic volume relaxation when subjected
to a two step loading protocol (not shown).

At any two time points in the non-monotonic dynam-
ics in which FN has the same value before and after the
peak, the sample’s compression and all other macroscopic
observables are identical; however, the system’s evolution
at these two points is qualitatively different. Thus, the
non-monotonic behavior clearly indicates that the state
of the system cannot be described by the macroscopic ob-
servables alone, and additional degrees of freedom storing
a memory of the system’s history must exist.

To characterize this non-monotonic behavior, we per-
formed a systematic study of the relation between the
peak time tp, the waiting time tw and the change in com-
pression at the last stage ∆ = H3−H2. Here, the repro-
ducibility of the experiments is crucial. For fixed values of
∆, the relation between the waiting time tw and the peak
time tp is approximately linear over several decades. In-
creasing ∆ results in a steeper linear dependence. These
results are depicted in Fig. 3a for the crumpled sheets
and Fig. 3b for elastic foams. Additional measurements
in which tw was kept constant while ∆ was varied over a
wide range indicate that the peak time increases as H3

approaches H1, as shown in the insets of Fig. 3a and 3b.

The scaling between tw and tp is a hallmark of a mem-
ory effect - the time in which the system reached its peak
normal force is correlated with changes in external con-
ditions made up to several hours earlier. These observa-
tions rule out single degree of freedom descriptions previ-
ously suggested to model slow relaxations in several dis-
ordered systems [7, 34], including crumpled thin sheets
[21]. Single-parameter theories relate the relaxation rate
of some macroscopic observable to its instantaneous value

and thus cannot account for non-monotonic behavior, or
for history dependent evolution - i.e. memory. An al-
ternative phenomenological framework was recently used
successfully to describe aging in several glassy systems,
introducing a new universality class related to the generic
behavior of logarithmic aging [28]. We show that this
framework can be generalized to apply also to the exper-
iments discussed here, capturing both the non-monotonic
relaxation, as well as the observed linear scaling between
tp and tw. We assume a system which is controlled by a
single parameter, E, and which evolves via an ensemble
of independent exponential relaxation modes, each char-
acterized by a rate λ with a broad distribution of rates,
P (λ). A key assumption is that for every E there exist an
equilibrium state V eq and that all relaxation modes have
the same amplitude and thus contribute to it equally. If
a system is initially at the equilibrium state V eq1 when E
is switched to a different value, its relaxation towards a
new equilibrium V eq2 can be written as

V (t) = V eq2 + (V eq1 − V
eq
2 )

λmax∫
λmin

P (λ)e−λtdλ (1)

where λmin and λmax are physical cutoff rates. Specif-
ically, for P (λ) ∝ 1/λ and 1/λmax � t � 1/λmin we
recover the logarithmic relaxation observed for the crum-
pled balls: V (t) = V eq2 − (V eq1 −V

eq
2 )(γE + log(λmint)) ≡

a+ b · log(t), where γE is the Euler-Mascheroni constant.
This particular distribution was shown to arise in certain
disordered systems via several potential mechanisms [28],
including thermal activation (also leading to 1/f noise
[35, 36]) and multiplicative processes. Interestingly, the
same distribution also arises in the context of ”sloppy
modes” [37], and random matrices [38, 39].

This formalism can predict the observed non-
monotonic relaxations, without additional assumptions.

FIG. 4. Phenomenological model. Simulation of Eq (3) for
V eq
1 = 1; V eq

2 = 0.2, V eq
3 = 0.5 and tw = 30. The instanta-

neous amplitude of the relaxation modes are shown for: (a)
t = tw and (b) t = tp. The slow modes with λ > 1/tw and the
fast modes with λ < 1/tw are depicted on the left and right re-
spectively . The width of the bars represents the abundance
of the different relaxation times according to P (λ) ∝ 1/λ.
(Insets) Total amplitude as a function of time calculated by
summing over all the individual modes.
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Here, starting at equilibrium V eq1 , the system evolves to-
wards V eq2 only for a finite time tw – as shown schemat-
ically in Fig. 4a. At this point, the equilibrium state
shifts to V eq3 . If V eq1 > V eq3 > V eq2 then at t = tw differ-
ent modes can be found at different sides of the equilib-
rium, as shown Fig. 4b. The slow modes, with decay rate
λ� 1/tw , are still in the vicinity of V eq1 , i.e. above V eq3 ,
while the fast modes with λ� 1/tw have reached the new
equilibrium V eq2 , and are below V eq3 . Thus, immediately
after tw the dynamics of the fast and slow modes are in
opposite directions. At this stage the overall response
can be dominated by the fast modes and as a result V (t)
increases over time (Fig. 4b). After the fast modes reach
the new equilibrium, the overall response is dominated
by the slow modes, leading to resumed relaxation.

Eq. 1 can be generalized for multiple steps by account-
ing for the out-of-equilibrium state of each mode at time
tw. At this time, the state of each relaxation mode is
given by V3,λ(t) = V eq3,λ + (V2,λ(tw) − V eq3,λ) · e−λt with

V2,λ(tw) = V eq2,λ + (V eq1,λ − V
eq
2,λ) · e−λtw . Thus, for t > tw

the system’s evolution is given by

V3(t) = V eq3 + (V eq2 − V
eq
3 )

∫ λmax

λmin

P (λ) · e−λtdλ

+ (V eq1 − V
eq
2 )

∫ λmax

λmin

P (λ) · e−λ(t+tw)dλ (2)

As before this expressions can be approximated by:

V3(t) = V eq3 − (V eq2 − V
eq
3 )(γE + log(λmint))

− (V eq1 − V
eq
2 )(γE + log(λmin(t+ tw))) (3)

Turning back to the experiments, the equilibria values
V eq represent the normal forces as would be measured at
infinitely long time, where the equilibrium force is larger
for lower V eq. However, this regime is not attainable
experimentally as the normal forces we measure do not
show any signs of reaching equilibrium. Nevertheless,
according to the model, b is proportional to changes in
the V eq, so that V eq2 − V eq3 ∝ b2 − b3 etc. As shown
in Figure 2a, for the crumpled Mylar sheets b is propor-
tional to F (t = 1s) − F1 Thus we can replace bi with
Fi − F1 = F (Hi), (i ∈ 2, 3), where Fi is the normal force
as measured one second after a compression from H1 to
Hi, and F1 is the normal force measured at H1 just before
the compression. Using this substitution and by differ-
entiating Eq. 3 to find the curve maximum, we find:

tp/tw = (F2 − F3)/(F3 − F1) (4)

Using this scaling relation, the data from all experi-
ments performed on crumpled Mylar approximately col-
lapses to a single linear curve as shown in Fig. 5a.
The analysis reveals an additional constant, denoted C,
such that the collapsed curve is of the form tp/tw =
C(F2 − F3)/(F3 − F1) with C = 2.6 ± 0.2. Accord-
ingly, it is possible to fit the non-monotonic relaxation

FIG. 5. Universal relaxation dynamics. (a) tp/tw versus
(F2 − F3)/(F3 − F1) for all the experiments preformed on
crumpled sheets (blue circles) and elastic foams (red squares).
(b) Single parameter fits for the non-monotonic relaxation of
Mylar sheets to A−B[(F3−F2)log(t)+(F2−F1)log(t+Ctw)]
with B = A ∗ 0.025 and C = 2.55.

curves to a modified version Eq. 3, namely: V3(t) =
A+B · [(F3−F2) · log(t) + (F2−F1) · log(t+Ctw)], using
A as a fitting parameter and with B = A ∗ 0.025 and
C = 2.55 for all curves. such fits are shown for different
values of tw and ∆ in Fig. 5b.

As shown earlier, the single-step relaxation of the elas-
tic foams can be described by a superposition of two log-
arithmic decays, offset by a time t0 that depends on the
compression. In analogy to Eq. 3, one can try to describe
the non-monotonic behavior in the elastic foams using a
superposition of four logarithmic processes. Indeed, it
can be shown that this introduces only small corrections
to the linear scaling between tp and tw, in agreement with
the data collapse in Fig. 5a. However, due to the nonlin-
earity introduced by the compression-dependent t0, it is
not possible to use the single-step relaxations to obtain
a good fit to the non-monotonic relaxation curve.

The non-monotonic relaxations reported here are rem-
iniscent of the aging behavior first described in the pio-
neering work of Kovacs [17]. Kovacs examined the slow
volume changes of polymer melts following a tempera-
ture change, demonstrating memory retention in a glassy
system. Analogous phenomena was observed in the time-
dependant viscosity of metallic glasses [40] and density
of agitated granular systems [19] as well as in numerical
studies [41, 42]. Despite recent progress [43–47], this phe-
nomenon is still not well understood. Our observations,
and their agreement with a phenomenological framework
known to describe relaxation and aging in glassy systems
is clear evidence that athermal mechanical systems can
exhibit glassy dynamics and that the non-monotonic be-
havior described here may be generic to many disordered
systems. Techniques such as direct visualization [48–50]
and monitoring of acoustic emission [51, 52] combined
with a physical understanding of the systems used in this
study [53–55] may shed new light on the structural origin
of the slow relaxation, non-monotonic aging and memory
effects observed in these systems.
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